Nanoelectrode Array Based Electronic Biosensors for Rapid Profiling of Cancerous

基于纳米电极阵列的电子生物传感器,用于快速分析癌症

基本信息

  • 批准号:
    8101546
  • 负责人:
  • 金额:
    $ 44.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overexpression of various enzymes such as kinases, phosphatases, and proteases has been recognized to lead to cancers. The enzyme activity profiling can be used for cancer diagnosis, therapeutic monitoring, and drug discovery. Here we propose a label-free electronic method for rapid, ultrasensitive, and highly reliable profiling of the activities of cancerous proteases. We hypothesize that a library of peptides attached to an independently addressed electrode array can be used to profile the activities of a mixture of cancer-related proteases through mapping the electrochemical signals at individual electrodes. An electroactive tag (i.e. a ferrocene, Fc) can be attached to the distal end of each peptide, which produces a characteristic redox signal with amplified amplitude measured by an alternate current (AC) voltammetry technique. This signal is reliable and not as easily interfered by nonspecific factors as other electronic techniques. Upon proteolysis by specific proteases such as legumain and matriptase, the peptides at a specific electrode site will be cleaved and the attached Fc moiety will leave the electrode surface. As a result, the redox signal will decay vs. time with the decay rate inversely proportional to the activity of that particular protease. A novel nanotechnology, i.e. embedded nanoelectrode arrays (NEAs), will be used to enhance the detection speed and sensitivity. The NEAs are based on well- separated vertically aligned carbon nanofibers (VACNFs) grown on individually addressed microelectrode pads and then encapsulated with SiO2. The top surface is polished or plasma etched to expose the very end of the carbon nanofibers (CNFs) of ~100 nm in diameter. Peptide substrates are covalently functionalized to the end of the CNFs. The NEA allows selective functionalization of very small amount of peptide molecules, facilitating extremely sensitive and fast electronic detection using high-frequency (~3 kHz) AC voltammetry techniques. In long term, the NEA can be fabricated into individually addressed multiplex chip, enabling the simultaneous detection of multiple proteases using many (up to 100) peptide substrates using only 5-10 microliter samples. This will significantly expedite protease profiling for cancer diagnosis, staging, outcome prediction, prognosis, and treatment selection. Three specific aims are designed within the scope of this AREA application toward our long-term goals: Specific Aim 1: CNF NEA fabrication and property characterization, Specific Aim 2: Method development for detecting peptide proteolysis with legumain and matriptase, Specific Aim 3: Protease profiling of various breast cancer cell lines. This AREA application will facilitate the transition of nanobiosensors research to potential clinical cancer diagnosis and therapeutic monitoring by rapid profiling cancer-related proteases through the collaboration of three researchers in physical sciences and cancer biology. It will stimulate graduate and undergraduate students at Kansas State University for further career development in health sciences and related fields through research experience in this cancer detection project. PUBLIC HEALTH RELEVANCE: Reliable, highly specific, ultrasensitive, and low-cost electronic technology is important for rapid screening of cancer diseases and monitoring cancer treatments. This proposed work is to develop a nanotechnology based electronic method for cancer detection through rapid profiling of the activities of cancerous proteases. This will significantly expedite cancer diagnosis, staging, outcome prediction, prognosis, and treatment selection.
描述(由申请人提供):各种酶(例如激酶、磷酸酶和蛋白酶)的过度表达已被认为会导致癌症。酶活性分析可用于癌症诊断、治疗监测和药物发现。在这里,我们提出了一种无标记电子方法,用于快速、超灵敏且高度可靠地分析癌蛋白酶的活性。我们假设连接到独立寻址电极阵列的肽库可用于通过绘制各个电极上的电化学信号来分析与癌症相关的蛋白酶混合物的活性。电活性标签(即二茂铁,Fc)可以附着在每个肽的远端,产生特征性氧化还原信号,其振幅通过交流(AC)伏安技术测量。该信号是可靠的,并且不像其他电子技术那样容易受到非特定因素的干扰。在被特定蛋白酶(例如legumain和matriptase)蛋白水解后,特定电极位点处的肽将被切割,并且附着的Fc部分将离开电极表面。结果,氧化还原信号将随时间衰减,衰减率与特定蛋白酶的活性成反比。一种新颖的纳米技术,即嵌入式纳米电极阵列(NEA),将用于提高检测速度和灵敏度。 NEA 基于分离良好的垂直排列碳纳米纤维 (VACNF),在单独寻址的微电极垫上生长,然后用 SiO2 封装。顶面经过抛光或等离子蚀刻,露出直径约 100 nm 的碳纳米纤维 (CNF) 的最末端。肽底物共价功能化至 CNF 末端。 NEA 允许对极少量的肽分子进行选择性功能化,从而促进使用高频 (~3 kHz) 交流伏安技术进行极其灵敏和快速的电子检测。从长远来看,NEA 可以制作成单独寻址的多重芯片,从而仅使用 5-10 微升样品即可使用许多(最多 100 个)肽底物同时检测多种蛋白酶。这将显着加快用于癌症诊断、分期、结果预测、预后和治疗选择的蛋白酶分析。在此 AREA 应用范围内,为了实现我们的长期目标,设计了三个具体目标:具体目标 1:CNF NEA 制造和特性表征,具体目标 2:开发使用 legumain 和 matriptase 检测肽蛋白水解的方法,具体目标 3:蛋白酶各种乳腺癌细胞系的分析。该 AREA 应用将通过物理科学和癌症生物学领域的三名研究人员的合作,通过快速分析癌症相关蛋白酶,促进纳米生物传感器研究向潜在的临床癌症诊断和治疗监测的转变。它将通过该癌症检测项目的研究经验,刺激堪萨斯州立大学的研究生和本科生在健康科学及相关领域的进一步职业发展。 公共健康相关性:可靠、高度特异性、超灵敏且低成本的电子技术对于快速筛查癌症疾病和监测癌症治疗非常重要。这项拟议的工作是开发一种基于纳米技术的电子方法,通过快速分析癌蛋白酶的活性来检测癌症。这将显着加快癌症诊断、分期、结果预测、预后和治疗选择。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Quantitative electrochemical detection of cathepsin B activity in breast cancer cell lysates using carbon nanofiber nanoelectrode arrays toward identification of cancer formation.
Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays.
  • DOI:
    10.1002/elps.201200486
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Madiyar, Foram R.;Syed, Lateef U.;Culbertson, Christopher T.;Li, Jun
  • 通讯作者:
    Li, Jun
Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays.
  • DOI:
    10.1016/j.bios.2014.01.002
  • 发表时间:
    2014-06-15
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Swisher, Luxi Z.;Prior, Allan M.;Shishido, Stephanie;Nguyen, Thu A.;Hua, Duy H.;Li, Jun
  • 通讯作者:
    Li, Jun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JUN LI其他文献

JUN LI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JUN LI', 18)}}的其他基金

Myelin Junction Therapy in Peripheral Neuropathies
周围神经病的髓磷脂连接治疗
  • 批准号:
    10735282
  • 财政年份:
    2020
  • 资助金额:
    $ 44.4万
  • 项目类别:
Rapid Protease Profiling with a Multiplex Electronic Method for Detection of Metastatic Triple-Negative Breast Cancer
使用多重电子方法快速进行蛋白酶分析,检测转移性三阴性乳腺癌
  • 批准号:
    9355398
  • 财政年份:
    2017
  • 资助金额:
    $ 44.4万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    9277192
  • 财政年份:
    2016
  • 资助金额:
    $ 44.4万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    10062791
  • 财政年份:
    2016
  • 资助金额:
    $ 44.4万
  • 项目类别:
Therapeutic Development in Segmental Demyelination
节段性脱髓鞘的治疗进展
  • 批准号:
    9137061
  • 财政年份:
    2016
  • 资助金额:
    $ 44.4万
  • 项目类别:
IGF::OT::IGF - IND ENABLING DEVELOPMENT OF NANOGMP: TARGETED
IGF::OT::IGF - IND 促进 NANOGMP 的开发:有针对性
  • 批准号:
    8857610
  • 财政年份:
    2014
  • 资助金额:
    $ 44.4万
  • 项目类别:
SVIP and CMT1A
SVIP 和 CMT1A
  • 批准号:
    8426333
  • 财政年份:
    2012
  • 资助金额:
    $ 44.4万
  • 项目类别:
SVIP and CMT1A
SVIP 和 CMT1A
  • 批准号:
    8534314
  • 财政年份:
    2012
  • 资助金额:
    $ 44.4万
  • 项目类别:
CONDUCTION BLOCK IN HNPP
HNPP 中的导电块
  • 批准号:
    8361939
  • 财政年份:
    2011
  • 资助金额:
    $ 44.4万
  • 项目类别:
Pathophysiology of Conduction Block in HNPP.
HNPP 传导阻滞的病理生理学。
  • 批准号:
    8608012
  • 财政年份:
    2010
  • 资助金额:
    $ 44.4万
  • 项目类别:

相似国自然基金

基于镍纳米粒子催化新型生物传感器研制及应用于中药残留检测
  • 批准号:
    82360857
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
改性卤氧化铋基纳米阵列微流控-光电化学生物传感器构建与肝癌标志物检测应用研究
  • 批准号:
    22304068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA氧化损伤修复酶生物传感器的构建及应用研究
  • 批准号:
    22304097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于转录调控元件改造构建对香豆酸和咖啡酸酵母生物传感器
  • 批准号:
    32371480
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于稀土掺杂上转换纳米材料构建快速检测有机磷农药多残留生物传感器研究
  • 批准号:
    82360656
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Elucidation of the mechanisms by which cells recognize and respond to different levels of androgens
阐明细胞识别和响应不同水平雄激素的机制
  • 批准号:
    10418461
  • 财政年份:
    2022
  • 资助金额:
    $ 44.4万
  • 项目类别:
Mechanisms of linkage of stem and invasive phenotypes during metastatic colonization
转移定植过程中干细胞和侵袭表型的联系机制
  • 批准号:
    10408967
  • 财政年份:
    2022
  • 资助金额:
    $ 44.4万
  • 项目类别:
Nanoparticle-augmented image-guided CAR T therapy and post-treatment assessment
纳米粒子增强图像引导的 CAR T 治疗和治疗后评估
  • 批准号:
    10861106
  • 财政年份:
    2022
  • 资助金额:
    $ 44.4万
  • 项目类别:
Nanoparticle-augmented image-guided CAR T therapy and post-treatment assessment
纳米粒子增强图像引导的 CAR T 治疗和治疗后评估
  • 批准号:
    10449425
  • 财政年份:
    2022
  • 资助金额:
    $ 44.4万
  • 项目类别:
THE EFFECT OF TUMOR MICROENVIRONMENT ON METASTASIS
肿瘤微环境对转移的影响
  • 批准号:
    10356006
  • 财政年份:
    2021
  • 资助金额:
    $ 44.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了