COMPUTATIONAL STUDIES OF RNA RECOGNITION AND CATALYSIS
RNA 识别和催化的计算研究
基本信息
- 批准号:8171777
- 负责人:
- 金额:$ 0.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAmberAnticodonAreaBindingBuffersCatalysisCatalytic RNACell physiologyCodeCollaborationsComplexComputer Retrieval of Information on Scientific Projects DatabaseDataElectrostaticsFundingFutureGrantHIVHumanHybridsHydrogenIn VitroInstitutionIonsLysine-Specific tRNAMaintenanceMechanicsMediatingMessenger RNAMethodsMolecular ConformationPeptidesPhasePositioning AttributeProteinsRNARNA-Protein InteractionResearchResearch PersonnelResourcesRoleSimulateSolutionsSolventsSourceSpecificityStructureSystemThermodynamicsTransfer RNATranslationsUnited States National Institutes of HealthWaterbasecofactorcomputational chemistrycomputer studiescomputing resourcesdimermolecular dynamicsmolecular mechanicsparallel computingplanetary Atmospherequantumsimulationsynthetic peptidetheoriestool
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Accurate RNA recognition by other biomolecules such as proteins, cofactors and other
RNA molecules are critical to many cellular functions. Employing a variety of
computational chemistry tools such as molecular dynamics simulations, quantum
calculations and hybrid quantum mechanical/molecular mechanics methods, our
research examines three primary areas, messenger RNA - transfer RNA (mRNA-tRNA)
recognition, a key step in the translation of proteins, protein-RNA interactions in
human immunodeficiency virus (HIV) and pKa calculations in catalytic RNA molecules.
In the first area, the role of naturally occurring, posttranscriptionally modified bases
in affecting tRNA-mRNA recognition is examined. In human tRNALys,3, we have found
that a modified base at position 37 are required for maintenance of a canonical stair-
stepped conformation in the anticodon bases (34-36). Ab initio studies employing
natural bond orbital analysis with the M05-2X functional are underway to determine
the underlying stabilizing forces and the role of modified bases at the 37th position in
retaining a stair-stepped conformation in all tRNAs. Optimization of hydrogen
positions at the M05-2X/6-31+G(d,p) theory level needs to be carried out for
tetranucleotides and trinucleotides (dimers are ~1400 basis functions), which on our
local machines can take greater than 45 days/calculation. Faster computing
resources are required to make progress on this project. In the second area of
research, we are examining the role of water and electrostatics in RNA-peptide
recognition. In late phase Rev-RRE recognition mediates nucleocytoplasmic export of
partially and unspliced HIV mRNA. From in vitro selection studies performed by
Frankel and coworkers, a synthetic peptide known as RSG-1.2 has been found to
bind RRE with greater affinity and specificity than the native Rev peptide. We have
simulated both Rev and RSG-1.2 peptides complexed with the RRE RNA in explicit
water using AMBER and have found a correlation between water structure in the
peptide-RNA complexes and binding affinity. More simulations to corroborate earlier
findings are required. Systems are roughly 35,000 atoms and data could be collected
more efficiently employing parallel AMBER code. Lastly, in collaboration with Darrin
York, we are calculating pKas in catalytic RNA molecules known as ribozymes. The
thermodynamic integration methods require equilibrated starting systems. Current
systems are carried out in explicit solvent (TIP4Pew), include 150 mM NaCl buffer
solution beyond the neutralized RNA and are about 75,000 atoms. These systems
require a number of simulated annealing rounds to equilibrate the ion atmosphere
and then the RNA must be subsequently equilibrated in the presence of the buffer
before TI calculations can be performed. This allocation is requested to take
advantage of parallel computing facilities while also exploring optimum Teragrid
platforms for future allocation requests.
该副本是利用众多研究子项目之一
由NIH/NCRR资助的中心赠款提供的资源。子弹和
调查员(PI)可能已经从其他NIH来源获得了主要资金,
因此可以在其他清晰的条目中代表。列出的机构是
对于中心,这不一定是调查员的机构。
其他生物分子(例如蛋白质,辅助因子和其他生物分子)的精确RNA识别
RNA分子对于许多细胞功能至关重要。采用各种各样的
计算化学工具,例如分子动力学模拟,量子
计算和杂交量子力学/分子力学方法,我们
研究检查了三个主要区域:Messenger RNA-转移RNA(mRNA -tRNA)
识别,这是蛋白质翻译的关键步骤,蛋白RNA相互作用
催化RNA分子中的人免疫缺陷病毒(HIV)和PKA计算。
在第一个区域,自然发生的,转录后修改后的作用
在影响tRNA-mRNA识别时。在《人类的trnalys》中,我们发现了
维护规范楼梯需要37位的修改基础
在反密码子碱基中踩踏构象(34-36)。从头算研究
使用M05-2X功能的天然键轨道分析正在进行中以确定
基础稳定力和在第37位位置的修改基础的作用
在所有trnas中保留楼梯稳定的构象。优化氢
需要执行M05-2X/6-31+G(D,P)理论水平的位置
四核苷酸和三核苷酸(二聚体〜1400个基函数),这在我们的
本地机器可能需要超过45天/计算。更快的计算
需要资源来取得该项目的进展。在第二区
研究,我们正在研究水和静电在RNA肽中的作用
认出。在后期,Rev-RRE识别介导的核细胞质出口
部分和未填充的艾滋病毒mRNA。来自体外选择研究
弗兰克尔和同事,一种称为RSG-1.2的合成肽
比天然REV肽具有更大的亲和力和特异性的RRE。我们有
模拟了与RRE RNA复合的REV和RSG-1.2肽
使用琥珀色的水,发现水结构之间的相关性
肽-RNA复合物和结合亲和力。更多的模拟以证实早期
需要调查结果。系统大约为35,000个原子,可以收集数据
更有效地采用平行琥珀色代码。最后,与达林合作
约克,我们正在计算称为核酶的催化RNA分子中的PKA。这
热力学整合方法需要平衡的启动系统。当前的
系统以显式溶剂(TIP4PEW)进行,包括150毫米NACL缓冲液
超出中和RNA的溶液,约为75,000个原子。这些系统
需要许多模拟退火回合以平衡离子气氛
然后必须在缓冲液存在下将RNA平衡
在进行TI计算之前。要求进行此分配
并行计算设施的优势,同时还探索最佳teragrid
未来分配请求的平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Colleen Nagan其他文献
Maria Colleen Nagan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Colleen Nagan', 18)}}的其他基金
COMPUTATIONAL STUDIES OF RNA RECOGNITION AND CATALYSIS
RNA 识别和催化的计算研究
- 批准号:
8364199 - 财政年份:2011
- 资助金额:
$ 0.11万 - 项目类别:
COMPUTATIONAL STUDIES OF RNA RECOGNITION AND CATALYSIS
RNA 识别和催化的计算研究
- 批准号:
7956307 - 财政年份:2009
- 资助金额:
$ 0.11万 - 项目类别:
MOLECULAR DYNAMICS STUDIES OF RIBONUCLEIC ACID STRUCTURE AND FUNCTION: HIV MRNA
核糖核酸结构和功能的分子动力学研究:HIV mRNA
- 批准号:
7723223 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
MOLECULAR DYNAMICS STUDIES OF RIBONUCLEIC ACID STRUCTURE AND FUNCTION
核糖核酸结构和功能的分子动力学研究
- 批准号:
7601486 - 财政年份:2007
- 资助金额:
$ 0.11万 - 项目类别:
相似国自然基金
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Exploring second-tier post-translational modifications in chromatin biology: A new class of histone modifications with undetermined function
探索染色质生物学中的二级翻译后修饰:功能未定的新型组蛋白修饰
- 批准号:
9328461 - 财政年份:2017
- 资助金额:
$ 0.11万 - 项目类别:
MOLECULAR DYNAMICS SIMULATIONS TO UNDERSTAND THE EFFECTS OF ACTIVE-SITE MUTATIO
通过分子动力学模拟了解活性位点突变的影响
- 批准号:
8364310 - 财政年份:2011
- 资助金额:
$ 0.11万 - 项目类别:
MOLECULAR DYNAMICS SIMULATIONS TO UNDERSTAND THE EFFECTS OF ACTIVE-SITE MUTATIO
通过分子动力学模拟了解活性位点突变的影响
- 批准号:
8171926 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
COMPUTATIONAL STUDIES OF RNA RECOGNITION AND CATALYSIS
RNA 识别和催化的计算研究
- 批准号:
7956307 - 财政年份:2009
- 资助金额:
$ 0.11万 - 项目类别:
Deployment of Quantum Mechanical Pairwise Energy Decomposition for Drug Discovery
用于药物发现的量子机械成对能量分解的部署
- 批准号:
7929952 - 财政年份:2009
- 资助金额:
$ 0.11万 - 项目类别: