Defining Vascular Functions of Proteoglycans through Chemical Biology Approaches
通过化学生物学方法定义蛋白多糖的血管功能
基本信息
- 批准号:8184146
- 负责人:
- 金额:$ 87.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAdverse effectsAffectAnabolismAnimal ModelAnticoagulantsBindingBiochemicalBiologicalBiologyBlood Coagulation DisordersBlood VesselsCardiovascular AgentsCause of DeathCell TransplantsCell physiologyCellsChemicalsChemistryCoagulation ProcessComplexDermatan SulfateDevelopmentDisabled PersonsDiseaseDisease ProgressionEndothelial CellsEnzymesEscherichia coliEventExtracellular MatrixFoundationsGlycoconjugatesGlycosaminoglycansGlypicanGoalsGraft RejectionGrowth FactorHealth Care CostsHemostatic functionHeparan Sulfate BiosynthesisHeparan Sulfate ProteoglycanHeparinHeparitin SulfateHeparitin sulfotransferaseHousingHypoxiaIL8 geneIn VitroInflammationInflammatoryInjuryInstructionKeratan SulfateKnowledgeLaboratoriesLibrariesLigandsLinkMethodologyModificationMolecularNatureOrganPatternPeptide HydrolasesPharmaceutical PreparationsPhysiologicalPhysiological ProcessesPlayPolysaccharidesProcessProtease InhibitorProtein IsoformsProteinsProteoglycanRecombinantsRegulationResearchResearch PersonnelRoleSepsisSideStructureStructure-Activity RelationshipSulfatasesSystemTechnologyTestingTherapeuticThrombosisTransplantationUniversitiesUtahVascular DiseasesVascular SystemWorkXenoangiogenesisbasecapsular polysaccharide K5chemokinecombatcytokinedermatan sulfate chondroitin sulfatedesignepimerizationexperienceextracellularhandicapping conditionin vivoinhibitor/antagonistmimeticsnew technologynovelprogramsreceptorscaffoldsmall moleculesulfationsulfotransferasesyndecan
项目摘要
Project Leader (Last, First, Middle): Balagurunathan, Kuberan
PROJECT SUI\/lli/IARY (See instructions);
Proteoglycans are the most complex glycoconjugates that play pivotal roles in vasculature. They consist of a
protein moiety with two or more glycosaminoglycan (GAG) side chains such as heparan sulfate (HS),
chondroitin sulfate (CS), dermatan sulfate (DS) and keratan sulfate (KS). HS is the most widely studied
among all GAGs. The fine structures of HS, in terms of their sulfation pattern, epimerization and domain
organization, dramatically affect their ability to bind to a wide variety of proteins, including growth factors,
proteases, protease inhibitors, adhesive proteins, chemokines and cytokines, which in turn are shown to
regulate various vascular pathophysiological processes such as hemostasis, thrombosis, hypoxia, sepsis,
inflammation and angiogenesis. GAG-protein, GAG-cell and GAG-ECM interactions are shown to be
dysregulated during these vascular pathological conditions exacerbating the disease conditions. These
dysregulated interactions are attributed to both increased or decreased expression of proteoglycans and
their remodeling enzymes such as extracellular sulfatases as well their increased shedding from endothelial
cells. Our knowledge of HS fine structures that regulate these interactions and factors that regulate HS
biosynthesis during the disease progression will advance our ability to harness the therapeutic potential of
HS in combating vascular diseases. In addition, understanding the importance of GAG multivalency will
guide us in fine tuning the cellular processes to ameliorate vascular disorders. In this application, we
propose to (a) use enzymatic strategy, originally developed by the PI, to assemble a panel of HS structures
to determine the structural parameters that are essential for interactions with coagulation proteases and
cytokines/chemokines, (b) to harness the therapeutic potential of GAGs through stimulating the biosynthesis
of proteoglycan mimetics using synthetic scaffolds and (c) to modulate HS biosynthesis to better define the
role of HS sulfation pattern in angiogenesis.
RELEVANCE (See instructions):
Vascular injuries are among the most debilitating and leading causes of deaths in USA. Furthermore, they
represent number one in the total national health care cost. Currently there are a limited number of drugs
available of which heparin is most widely used as anticoagulant though it has numerous side effects. This
proposal aims to understand the biological role of heparin like molecules at the molecular level and the
factors that regulate their biosynthesis with the final goal of developing cardiovascular drugs.
项目负责人(最后,第一,中间):库伯兰的Balagurunathan
SUI \/lli/iary项目(请参阅说明);
蛋白聚糖是在脉管系统中起关键作用的最复杂的糖缀合物。它们由
蛋白质部分具有两个或多个糖胺聚糖(GAG)的侧链,例如硫酸乙酰肝素(HS),
硫酸软骨素(CS),硫酸皮肤菌(DS)和硫酸角盐(KS)。 HS是研究最广泛的
在所有插科打.。 HS的精细结构,就其硫酸化模式,表达和结构域而言
组织,极大地影响了它们与各种蛋白质结合的能力,包括生长因素,
蛋白酶,蛋白酶抑制剂,粘合蛋白,趋化因子和细胞因子,而这些因子又显示为
调节各种血管病理生理过程,例如止血,血栓形成,缺氧,败血症,
炎症和血管生成。 GAG蛋白,插科打蛋白和GAG-ECM相互作用被证明是
在这些血管病理状况下,失调加剧了疾病。这些
失调的相互作用归因于蛋白聚糖的表达增加或降低
它们的重塑酶,例如细胞外硫酸酶以及内皮的脱落的增加
细胞。我们对HS细胞结构的了解,这些结构调节了这些相互作用和调节HS的因素
疾病进展过程中的生物合成将提高我们利用治疗潜力的能力
HS对抗血管疾病。此外,了解堵嘴多价的重要性将
指导我们微调细胞过程以改善血管疾病。在此应用程序中,我们
建议(a)使用最初由PI开发的酶促策略组装HS结构的面板
确定对于与凝血蛋白酶相互作用至关重要的结构参数
细胞因子/趋化因子,(b)通过刺激生物合成来利用GAG的治疗潜力
使用合成支架和(c)调节HS生物合成以更好地定义蛋白聚糖的模拟物
HS硫酸化模式在血管生成中的作用。
相关性(请参阅说明):
血管损伤是美国最令人衰弱和主要的死亡原因之一。此外,他们
代表国民保健总成本中的第一名。目前的药物数量有限
可用的肝素最广泛用作抗凝剂,尽管它具有许多副作用。这
建议旨在了解分子水平和分子的肝素之类的生物学作用
通过开发心血管药物的最终目标来调节其生物合成的因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUBERAN BALAGURUNATHAN其他文献
KUBERAN BALAGURUNATHAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUBERAN BALAGURUNATHAN', 18)}}的其他基金
Defining Vascular Functions of Proteoglycans through Chemical Biology Approaches
通过化学生物学方法定义蛋白多糖的血管功能
- 批准号:
8380067 - 财政年份:2011
- 资助金额:
$ 87.2万 - 项目类别:
Defining Vascular Functions of Proteoglycans through Chemical Biology Approaches
通过化学生物学方法定义蛋白多糖的血管功能
- 批准号:
8669114 - 财政年份:
- 资助金额:
$ 87.2万 - 项目类别:
Defining Vascular Functions of Proteoglycans through Chemical Biology Approaches
通过化学生物学方法定义蛋白多糖的血管功能
- 批准号:
9068300 - 财政年份:
- 资助金额:
$ 87.2万 - 项目类别:
Defining Vascular Functions of Proteoglycans through Chemical Biology Approaches
通过化学生物学方法定义蛋白多糖的血管功能
- 批准号:
8516574 - 财政年份:
- 资助金额:
$ 87.2万 - 项目类别:
相似国自然基金
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel bioreducible polymer-based delivery platform for intravitreal gene transfer to retina
用于玻璃体内基因转移至视网膜的新型生物可还原聚合物递送平台
- 批准号:
10573812 - 财政年份:2023
- 资助金额:
$ 87.2万 - 项目类别:
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
- 批准号:
10603678 - 财政年份:2023
- 资助金额:
$ 87.2万 - 项目类别:
Retinal-adhesive thermoresponsive gel for AAV-mediated gene delivery to the outer retina
用于将 AAV 介导的基因传递至外视网膜的视网膜粘附热敏凝胶
- 批准号:
10709508 - 财政年份:2022
- 资助金额:
$ 87.2万 - 项目类别:
Retinal-adhesive thermoresponsive gel for AAV-mediated gene delivery to the outer retina
用于将 AAV 介导的基因传递至外视网膜的视网膜粘附热敏凝胶
- 批准号:
10453146 - 财政年份:2022
- 资助金额:
$ 87.2万 - 项目类别:
Structure-Function Studies of Aquaporin 0 in Lens Development and Physiology
水通道蛋白 0 在晶状体发育和生理学中的结构功能研究
- 批准号:
10334493 - 财政年份:2021
- 资助金额:
$ 87.2万 - 项目类别: