BIOINFORMATIC CORE

生物信息学核心

基本信息

项目摘要

INTRODUCTION and OBJECTIVES: It has been shown that proteins involved in similar Mendelian and complex phenotypes have a strong tendency to interact directly and physically in human protein interaction networks. In particular, first order interactions have been explored in a number of methods for prioritizing candidates in linkage regions associated with a particular phenotype. However, these strategies lose their power when the loci become too big, perhaps because they are confined to using direct first order interactions or use gene ontology and expression data, to predict higher order physical interactions. General methods for genome-scale prioritization of candidates in a phenotype based on protein interaction network data, have to our knowledge not been reported, particularly in the search for molecular causes of birth defects. In numerous complex disorders, Genome Wide Association studies (GWAS) have incriminated genes in the same disease that are not known to obviously participate in the same cellular pathway. This could be because there is no pathway relationship connecting the genes or because we do not have a complete overview of all biological pathways or knowledge of their crosstalk. If the latter reason is correct, a lack of knowledge on the precise composition of many pathways must be taken into account when constructing models that systematically uses pathway relationships to determine novel components in complex disorders. Here, we present a model that in a given disease, determines if a candidate significantly interacts with known disease causing proteins in higher order interaction networks. A component of this model is refined large-scale proteomics data, meaning it is not confined to or biased towards existing well-known pathways. In this way, our model mirrors the pathway independent discovery in genome-wide association studies. This model has the power to make accurate genome-wide predictions of risk factors in a complex phenotype.
介绍和目标: 已经表明,参与类似Mendelian和复杂表型的蛋白质具有在人类蛋白质相互作用网络中直接和物理相互作用的强烈趋势。特别是,已经在许多方法中探索了一阶相互作用,以优先考虑与特定表型相关的链接区域中的候选人。但是,当基因座变得太大时,这些策略会失去力量,也许是因为它们仅限于使用直接的一阶相互作用或使用基因本体论和表达数据来预测高阶物理相互作用。基于蛋白质相互作用网络数据的表型中候选者的基因组规模优先级的一般方法,据我们所知,尤其是在寻找出生缺陷的分子原因时。 在众多复杂疾病中,基因组广泛的关联研究(GWAS)在同一疾病中具有犯罪基因,这些基因显然参与了相同的细胞途径。这可能是因为没有连接基因的途径关系,或者因为我们没有对其串扰的所有生物学途径或知识的完整概述。如果后一个原因是正确的,则在构建系统使用途径关系来确定复杂疾病中的新成分的模型时,必须考虑有关许多途径的精确组成的知识。 在这里,我们提出了一个模型,该模型在给定疾病中确定候选者是否与已知疾病显着相互作用,从而导致蛋白质在高阶相互作用网络中。该模型的一个组成部分是精制的大规模蛋白质组学数据,这意味着它不局限于或偏向现有众所周知的途径。这样,我们的模型反映了全基因组关联研究中的途径独立发现。这 模型有能力对复杂表型中的风险因素进行准确的全基因组预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

PATRICIA K DONAHOE的其他基金

Administrative Core
行政核心
  • 批准号:
    10159738
    10159738
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
ADMINISTRATIVE CORE
行政核心
  • 批准号:
    8143193
    8143193
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
PROJECT II: VARIANTS FROM COMPLEMENTARY GENOMIC TECHNOLOGIES WILL YIELD
项目二:互补基因组技术的变体将会产生
  • 批准号:
    8143191
    8143191
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
  • 批准号:
    8291254
    8291254
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Mouse Models Will Elucidate Genetics of CDH and Associated Pulmonary Defects and Identify Clinically Relevant Targets
小鼠模型将阐明 CDH 和相关肺部缺陷的遗传学并确定临床相关目标
  • 批准号:
    10159742
    10159742
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
EXPRESSION CORE
表达核心
  • 批准号:
    8143200
    8143200
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
  • 批准号:
    8515483
    8515483
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Program Project: GENE MUTATION AND RESCUE IN HUMAN DIAPHRAGMATIC HERNIA
计划项目:人类膈疝的基因突变与挽救
  • 批准号:
    8079810
    8079810
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
PROJECT I; POLYGENIC CAUSES of ISOLATED and NON-SYNDROMIC CONGENITAL
项目一;
  • 批准号:
    8143184
    8143184
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
PROJECT llI; EXPRESSED CDH CANDIDATE GENES CAN BE PREDICTED THEN FUNCTIONALLY
项目III;
  • 批准号:
    8143192
    8143192
  • 财政年份:
    2011
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:

相似国自然基金

面向致癌基因识别的多组学数据矩阵分解算法研究
  • 批准号:
    61902215
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
整合基因突变与差异表达数据的癌症关键基因模块预测算法研究
  • 批准号:
    61902390
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于深度和多示例学习的m6A-seq数据分析质量提升算法研究
  • 批准号:
    61902323
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
复杂组织高通量数据的异质性分解及应用算法研究
  • 批准号:
    61902061
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模蛋白质功能预测的高效算法研究
  • 批准号:
    61872094
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

The microbiome associated with oral Leukoplakia: A multi-omics mechanistic study
与口腔白斑相关的微生物组:一项多组学机制研究
  • 批准号:
    10870268
    10870268
  • 财政年份:
    2023
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Linking microbiome genetic variants with cardiovascular phenotypes in 50,000 individuals
将 50,000 名个体的微生物组遗传变异与心血管表型联系起来
  • 批准号:
    10516693
    10516693
  • 财政年份:
    2022
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
  • 批准号:
    10673857
    10673857
  • 财政年份:
    2022
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
  • 批准号:
    10515569
    10515569
  • 财政年份:
    2022
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别:
Integrative genomic and epigenomic analysis of cancer using long read sequencing
使用长读长测序对癌症进行综合基因组和表观基因组分析
  • 批准号:
    10396074
    10396074
  • 财政年份:
    2021
  • 资助金额:
    $ 8.21万
    $ 8.21万
  • 项目类别: