Enantioselective Enamine Catalysis with Aldehydes
醛对映选择性烯胺催化
基本信息
- 批准号:7436329
- 负责人:
- 金额:$ 29.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-07 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-hydroxybutanalAcidsAdoptedAerobicAirAldehydesAlkylationAminationAminesAmino AcidsArchitectureAreaAttentionAziridinesBasic ScienceBenignBiochemistryBiologicalBiological FactorsBiotechnologyCarbohydratesCarbonCatalysisCationsChemicalsChemistryChlorineCommerceComplexCyclizationDevelopmentDiels Alder reactionDrug DesignEconomicsElectronsEnvironmentEpoxy CompoundsFacility Construction Funding CategoryFloodsFluorineGlucoseGlycobiologyGoalsGrantHalogensHydroxy AcidsIn SituIndustryInterceptMannoseMarketingMediatingMetabolismMetalsMethodologyMethodsMolecularMolecular BiologyMolecular ProbesMutationNamesNitrogenNumbersObject AttachmentOne-Step dentin bonding systemOrganic ChemicalsOrganic SynthesisOxidation-ReductionOxygenPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePrincipal InvestigatorProcessProductionProtocols documentationRangeReactionReagentResearchResearch PersonnelSavingsSolventsStructureSulfurSystemTechniquesTechnologyTimeToxic effectTrace metalUnited States Food and Drug Administrationalloseanimationaziridinebasecatalystchemical synthesischlorinationconceptcostcycloadditiondesignenantiomererythrosefrontierguloseidosein vivoinnovationinterestnovelnovel strategiesoxidationplanetary Atmospherepolyolprogramstooluptakewasting
项目摘要
DESCRIPTION (provided by applicant): Over the last 30 years, enantioselective catalysis has become one of the most important frontiers in exploratory organic synthetic research with widespread application in biomedical settings. Surprisingly, however, the research area of organocatalysis (the use of small organic molecules as reaction catalysts) has become a field of central importance in chemical synthesis in only the last ten years. This is quite remarkable given the widespread availability of organic chemicals in enantiopure form and the attendant potential for savings in cost, time, energy, operational complexity and chemical waste. This proposal outlines the development of an innovative and general strategy for enantioselective organocatalysis that enables simple aldehydes to participate in a variety of a-functionalization reactions that were previously unknown. As part of these studies, we describe a catalyst design endeavor that should provide inexpensive, robust amine catalysts that engender high levels of asymmetric induction for a broad spectrum of enamine-mediated reactions. During the tenure of this granting period we hope to demonstrate the value of this new enamine activation strategy in the context of the first examples of enantioselective organocatalytic (1) aldehyde-aldehyde cross aldol reactions, (2) a-chlorination reactions, (3) a-aminotosylation reactions, and (4) a-alkylation reactions.
We also hope to introduce three new strategies for chemical synthesis that are founded upon enamine organocatalysis that will allow accelerated access to bioarchitectures and functionalities that are not readily available by conventional methods. The first strategy involves a conceptually novel approach to the production of polyol-differentiated carbohydrates in only two chemical transformations (both aldol reactions). This modularity of this sequence will allow the construction of natural and non-natural carbohydrates that can incorporate carbon, nitrogen, halogen or sulfur substituents within the saccharide framework. The second strategy involves the enantioselective catalytic synthesis of reactive intermediates that are suitably versatile to undergo in situ, asymmetric bond transfer. This powerful strategy should enable the production of a diverse range of synthons such as aziridines, epoxides and amino acids (amongst others) from simple aldehydes using the same catalytic induction step in each protocol. Last, we introduce a new activation concept for organocatalysis that we term SOMO activation. This new approach to organocatalysis is based upon the transient formation of aldehyde derived radical cations (the one-electron intermediate that bridges the fields of iminium and enamine catalysis) that can enantioselectively intercept a range of p-nucleophiles. Specifically, we propose that SOMO catalysis will allow the first enantioselective intramolecular a-alkylation of aldehydes, a long standing goal for the field of asymmetric catalysis. Having demonstrated the feasibility of SOMO activation, we hope to launch this new organocatalysis area in the context of several important transforms including intramolecular oxidative cyclizations.
描述(由申请人提供):在过去的 30 年里,对映选择性催化已成为探索性有机合成研究中最重要的前沿之一,并在生物医学领域得到广泛应用。然而,令人惊讶的是,有机催化研究领域(使用有机小分子作为反应催化剂)仅在过去十年就已成为化学合成中的核心重要领域。考虑到对映体纯形式的有机化学品的广泛使用以及随之而来的节省成本、时间、能源、操作复杂性和化学废物的潜力,这是相当引人注目的。该提案概述了对映选择性有机催化的创新和通用策略的开发,该策略使简单的醛能够参与各种以前未知的α-官能化反应。作为这些研究的一部分,我们描述了一种催化剂设计工作,该设计应提供廉价、坚固的胺催化剂,为广泛的烯胺介导的反应产生高水平的不对称诱导。在本授权期间,我们希望在对映选择性有机催化的第一个例子的背景下证明这种新的烯胺活化策略的价值(1)醛-醛交叉羟醛反应,(2)α-氯化反应,(3) α-氨基甲苯基化反应,和(4)α-烷基化反应。
我们还希望引入三种基于烯胺有机催化的化学合成新策略,这将允许加速获得传统方法不易获得的生物结构和功能。第一个策略涉及一种概念上新颖的方法,仅通过两次化学转化(均为羟醛反应)即可生产多元醇分化的碳水化合物。该序列的这种模块化将允许构建天然和非天然碳水化合物,这些碳水化合物可以在糖框架内掺入碳、氮、卤素或硫取代基。第二种策略涉及反应性中间体的对映选择性催化合成,这些中间体适用于进行原位不对称键转移。这种强大的策略应该能够在每个方案中使用相同的催化诱导步骤从简单的醛生产各种合成子,例如氮丙啶、环氧化物和氨基酸(等等)。最后,我们引入了有机催化的新激活概念,我们称之为 SOMO 激活。这种新的有机催化方法基于醛衍生的自由基阳离子(桥接亚胺和烯胺催化领域的单电子中间体)的瞬时形成,该阳离子可以对映选择性地拦截一系列p-亲核试剂。具体来说,我们提出SOMO催化将实现醛的第一个对映选择性分子内α-烷基化,这是不对称催化领域的长期目标。在证明了 SOMO 活化的可行性后,我们希望在包括分子内氧化环化在内的几个重要转变的背景下启动这个新的有机催化领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David W MacMillan其他文献
David W MacMillan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David W MacMillan', 18)}}的其他基金
Photoredox Catalysis Applications in Organometallics and Chemical Biology
光氧化还原催化在有机金属学和化学生物学中的应用
- 批准号:
10326379 - 财政年份:2020
- 资助金额:
$ 29.53万 - 项目类别:
Photoredox Catalysis Applications in Organometallics and Chemical Biology
光氧化还原催化在有机金属学和化学生物学中的应用
- 批准号:
10544541 - 财政年份:2020
- 资助金额:
$ 29.53万 - 项目类别:
Photoredox Catalysis Applications in Organometallics and Chemical Biology
光氧化还原催化在有机金属学和化学生物学中的应用
- 批准号:
10077569 - 财政年份:2020
- 资助金额:
$ 29.53万 - 项目类别:
相似国自然基金
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道微生物通过胆汁酸诱导宿主脂肪产热的分子机制研究
- 批准号:32302709
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胆汁酸通过TRPC3调控血管平滑肌钙稳态改善高血压的机制
- 批准号:32371166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群短链脂肪酸代谢物通过组蛋白去乙酰化酶HDAC2/ELK1通路调控模拟失重下成骨细胞分化和骨形成的机制研究
- 批准号:82302112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低分子量透明质酸通过DCs调控Th17细胞分化促进桥本氏甲状腺炎发生发展的机制研究
- 批准号:82300884
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-cell autonomous consequences of cytoplasmic DNA
细胞质 DNA 的非细胞自主后果
- 批准号:
10748962 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别:
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别:
Determinants of amino acid transporter oligomerization in membranes
膜中氨基酸转运蛋白寡聚的决定因素
- 批准号:
10725968 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别:
Cofactor metabolism and mitochondrial function in malaria parasites
疟原虫的辅因子代谢和线粒体功能
- 批准号:
10659968 - 财政年份:2023
- 资助金额:
$ 29.53万 - 项目类别: