SELF-ASSEMBLING GROWTH FACTOR GRADIENTS FOR NERVE REGENERATION
用于神经再生的自组装生长因子梯度
基本信息
- 批准号:8258036
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAffinityAzidesCaliberCell AdhesionCell Adhesion MoleculesCell Culture TechniquesCellsCentrifugationChemistryCollaborationsComplexDevelopmentEngineeringEnsureEthylene GlycolsEvaluationExtracellular MatrixFiberFibrinGoldGrowthGrowth FactorHumanHydrogelsIn VitroInferiorLamininMedicalMethodsMicrospheresModelingMotorNatural regenerationNerveNerve RegenerationNeuritesNeurogliaOrganic solvent productPeripheral NervesPhasePlasminPreparationProcessProductionPropertyProteinsReactionSolutionsStructureSystemTechniquesTestingTubular formationanalogaqueousbasecrosslinkethylene glycolin vitro Modelin vivoinnovationnerve autograftneurotrophic factornovelpolymerizationrelating to nervous systemscaffoldself assemblysurfactant
项目摘要
DESCRIPTION (provided by applicant): Promotion of peripheral nerve regeneration across large gaps continues to be substantial medical and engineering challenge. Materials with gradients of growth factors and adhesion factors have proven to be effective in enhancing nerve regeneration. However, these materials are still inferior to the gold standard, nerve autograft. The co-PI team of Elbert and Sakiyama- Elbert are leading an effort to produce synthetic materials that are superior to naturally derived regeneration matrices. The synthetic materials will be based on poly(ethylene glycol) (PEG) but will have many of the properties of fibrin. Most importantly, the PEG materials will have the novel ability to self-assemble gradients of growth factors and adhesion factors. The Elbert lab recently introduced a method of modular or 'bottom-up' scaffold assembly that uses PEG microspheres with different properties to assemble scaffolds in the presence of cells. One of the properties that can be easily modified is the buoyancy of the microspheres. Batches of microspheres with different buoyancies will self-assemble into a graded material upon centrifugation. This property will be used to establish gradients of the growth factor GDNF and the adhesion protein laminin in small scaffolds that are used for nerve guidance conduits. Although many techniques for gradient assembly are known, current methods become very challenging in small diameter conduits. The new method should prove to be more reliable and robust for generating growth factor gradients. The scaffolds will be engineered and evaluated in vitro in this project period in preparation for in vivo evaluation in subsequent project periods.
PUBLIC HEALTH RELEVANCE: Promotion of peripheral nerve regeneration across large gaps continues to be substantial medical and engineering challenge. Gradients of growth factors and adhesion factors have proven to be effective in enhancing nerve regeneration. The co-PI team of Elbert and Sakiyama-Elbert are leading an effort to produce synthetic materials that have many of the properties of naturally derived regeneration matrices, and some properties that are superior to current materials. Importantly, the materials will have the novel ability to self-assemble gradients of growth factors and adhesion factors. The materials will be further developed in this project period and evaluated in an in vitro model of nerve regeneration.
描述(由申请人提供):跨越大间隙促进周围神经再生仍然是重大的医学和工程挑战。具有生长因子和粘附因子梯度的材料已被证明可有效增强神经再生。然而,这些材料仍然不如金标准——自体神经移植物。 Elbert 和 Sakiyama-Elbert 的联合 PI 团队正在努力生产优于天然再生基质的合成材料。合成材料将以聚乙二醇(PEG)为基础,但具有纤维蛋白的许多特性。最重要的是,PEG材料将具有自组装生长因子和粘附因子梯度的新能力。 Elbert 实验室最近推出了一种模块化或“自下而上”支架组装方法,该方法使用具有不同特性的 PEG 微球在细胞存在的情况下组装支架。可以容易地改变的特性之一是微球的浮力。具有不同浮力的批次微球将在离心后自组装成分级材料。该特性将用于在用于神经引导导管的小支架中建立生长因子 GDNF 和粘附蛋白层粘连蛋白的梯度。尽管许多用于梯度组装的技术是已知的,但是当前的方法在小直径导管中变得非常具有挑战性。新方法应该被证明对于生成生长因子梯度更加可靠和稳健。支架将在本项目期间进行体外设计和评估,为后续项目期间的体内评估做好准备。
公共卫生相关性:促进周围神经再生的巨大差距仍然是重大的医学和工程挑战。生长因子和粘附因子的梯度已被证明可有效增强神经再生。 Elbert 和 Sakiyama-Elbert 的联合 PI 团队正在致力于生产合成材料,这些材料具有天然衍生的再生基质的许多特性,以及一些优于现有材料的特性。重要的是,这些材料将具有自组装生长因子和粘附因子梯度的新能力。这些材料将在该项目期间得到进一步开发,并在体外神经再生模型中进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD L ELBERT其他文献
DONALD L ELBERT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD L ELBERT', 18)}}的其他基金
SELF-ASSEMBLING GROWTH FACTOR GRADIENTS FOR NERVE REGENERATION
用于神经再生的自组装生长因子梯度
- 批准号:
8318068 - 财政年份:2011
- 资助金额:
$ 22.8万 - 项目类别:
QUANTITATIVE MASS SPECTROMETRY TO PROBE FIBRINOGEN CONFORMATIONS ON BIOMATERIALS
定量质谱法探测生物材料上的纤维蛋白原构象
- 批准号:
7665070 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
QUANTITATIVE MASS SPECTROMETRY TO PROBE FIBRINOGEN CONFORMATIONS ON BIOMATERIALS
定量质谱法探测生物材料上的纤维蛋白原构象
- 批准号:
7527546 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
Development of materials to release bioactive lipids
开发释放生物活性脂质的材料
- 批准号:
7133870 - 财政年份:2006
- 资助金额:
$ 22.8万 - 项目类别:
Development of materials to release bioactive lipids
开发释放生物活性脂质的材料
- 批准号:
7636742 - 财政年份:2006
- 资助金额:
$ 22.8万 - 项目类别:
Development of materials to release bioactive lipids
开发释放生物活性脂质的材料
- 批准号:
7874718 - 财政年份:2006
- 资助金额:
$ 22.8万 - 项目类别:
Development of materials to release bioactive lipids
开发释放生物活性脂质的材料
- 批准号:
7268740 - 财政年份:2006
- 资助金额:
$ 22.8万 - 项目类别:
Development of materials to release bioactive lipids
开发释放生物活性脂质的材料
- 批准号:
7454191 - 财政年份:2006
- 资助金额:
$ 22.8万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Four-dimensional Adhesion Frequency Assay for Full Profiling of Receptor-ligand Interactions on Cells
四维粘附频率测定,全面分析细胞上受体-配体相互作用
- 批准号:
10707983 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别: