Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
基本信息
- 批准号:8211783
- 负责人:
- 金额:$ 17.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-30 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAppointmentBrainCodeCognitionCommunitiesComputing MethodologiesDataData SetDevelopmentEngineeringEquationFacultyFosteringFundingGenerationsGoalsInterdisciplinary StudyJournalsLaboratoriesMathematicsMental disordersMethodologyNational Research Service AwardsNeurobiologyNeurologicNeurosciencesPsychologyRequest for ApplicationsResearchResearch Project GrantsSchoolsSeriesStatistical MethodsStudentsSystemTrainingTraining ProgramsUnited StatesUniversitiesWorkbasecognitive neurosciencecollegecomputational neurosciencecomputer programcomputer scienceexperiencegraduate studentlecturesneuromechanismneurophysiologynew technologyprogramsrelating to nervous systemresponsible research conductskillsstatistics
项目摘要
DESCRIPTION (provided by applicant): This application requests renewal of support for undergraduate and graduate training programs in computational neuroscience (TPCN) at both Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt), and for a summer school in computational neuroscience for undergraduates, which will be available to students coming from colleges and universities throughout the United States. The TPCN will administered by the Center for the Neural Basis of Cognition (CNBC), an umbrella organization operated jointly by CMU and Pitt that was established in 1994 to foster interdisciplinary research on the neural mechanisms of brain function, which now comprises 107 faculty having appointments in 20 departments. Research in neuroscience is crucial for attacking the causes of neurological and mental health disorders. If the field of neuroscience is to continue its rapid advance, neuroscientists must use, understand, and develop new technologies, acquire and analyze ever larger data sets, and grapple more directly with the complexity of neurobiological systems. In this effort, widespread development and adoption of new computational methods has become essential to progress. The primary goal of TPCN programs is to help train a new generation of interdisciplinary neuroscientists with strong quantitative skills. A second goal is the incorporation of computational and data analytic principles into the field of neuroscience through enhanced training at the undergraduate and graduate level. Trainees will work in vertically integrated, cross-disciplinary research teams. Graduate students will take courses in cognitive neuroscience, neurophysiology, and systems neuroscience; they will satisfy a depth requirement in quantitative methodology of their choice (involving computer science, engineering, mathematics, and/or statistics); they will have extended experience in at least one experimental laboratory; and they will take part in journal clubs and seminars within the large Pittsburgh computational neuroscience community. Year-long undergraduates will take courses in mathematics, computer programming, statistics, and neuroscience; they will take an additional course in neuroscience or psychology and a course in computational neuroscience; and they will complete a year-long research project. In addition, they will complete the summer program. Undergraduate trainees in the summer program will sit through a series of lectures on topics in computational neuroscience, including tutorials in Matlab, statistical methods, fundamentals of differential equations, and ideas of neural coding, and will complete a research project. All trainees will receive training in responsible conduct of research. Across 5 years of funding, TPCN will support 20 NRSA graduate students, 10 non-NRSA graduate students, 30 undergraduate year-long fellows, and 60 undergraduate summer fellows.
PUBLIC HEALTH RELEVANCE: Research in neuroscience is crucial for attacking the causes of neurological and mental health disorders. If the field of neuroscience is to continue its rapid advance, neuroscientists must use, understand, and develop new technologies, acquire and analyze ever larger data sets, and grapple more directly with the complexity of neurobiological systems. The primary goal of these training programs will be to help train a new generation of interdisciplinary neuroscientists with strong quantitative skills.
描述(由申请人提供):本申请要求续签卡内基·梅隆大学(CMU)和匹兹堡大学(PITT)的计算神经科学学院和研究生培训计划(TPCN),以及对学生和大学的计算神经科学的计算神经科学的暑期学校,该学院将为纽约大学提供。 TPCN将由CMU和PITT共同经营的伞组织(CNBC)中心(CNBC)进行管理,该组织成立于1994年,以促进有关脑功能的神经机制的跨学科研究,该研究现在构成了207个部门任命的107个教师。神经科学的研究对于攻击神经系统和心理健康障碍的原因至关重要。如果神经科学领域要继续其快速发展,神经科学家必须使用,理解和开发新技术,获取和分析更大的数据集,并更直接地与神经生物学系统的复杂性更直接地抓住。在这项努力中,新的计算方法的广泛发展和采用对进步至关重要。 TPCN计划的主要目标是帮助培训具有强大定量技能的新一代跨学科神经科学家。第二个目标是将计算和数据分析原理纳入神经科学领域,通过在本科和研究生水平上加强训练。学员将在垂直整合的跨学科研究团队中工作。研究生将参加认知神经科学,神经生理学和系统神经科学课程;他们将满足其选择的定量方法(涉及计算机科学,工程,数学和/或统计数据)的深度要求;他们将在至少一个实验实验室中拥有丰富的经验;他们将参加大型匹兹堡计算神经科学社区的期刊俱乐部和研讨会。为期一年的本科生将参加数学,计算机编程,统计和神经科学课程;他们将学习神经科学或心理学的额外课程以及计算神经科学课程;他们将完成为期一年的研究项目。此外,他们将完成夏季计划。夏季计划的本科学员将介绍有关计算神经科学主题的一系列讲座,包括MATLAB中的教程,统计方法,微分方程的基础知识和神经编码的思想,并将完成一个研究项目。所有学员将接受负责任的研究培训。在5年的资金中,TPCN将支持20名NRSA研究生,10名非NRSA研究生,30名本科生一年的研究生和60名本科夏季研究员。
公共卫生相关性:神经科学的研究对于攻击神经和心理健康障碍的原因至关重要。 如果神经科学领域要继续其快速发展,神经科学家必须使用,理解和开发新技术,获取和分析更大的数据集,并更直接地与神经生物学系统的复杂性更直接地抓住。这些培训计划的主要目标是帮助培训具有强大定量技能的新一代跨学科神经科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT E KASS其他文献
ROBERT E KASS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT E KASS', 18)}}的其他基金
STATISTICAL ANALYSIS OF NEURAL DATA 9 (SAND9)
神经数据9(SAND9)的统计分析
- 批准号:
9763087 - 财政年份:2019
- 资助金额:
$ 17.87万 - 项目类别:
STATISTICAL ANALYSIS OF NEURONAL DATA (SAND8)
神经元数据的统计分析(SAND8)
- 批准号:
9397844 - 财政年份:2017
- 资助金额:
$ 17.87万 - 项目类别:
CASE STUDIES IN BAYESIAN STATISTICS AND MACHINE LEARNING
贝叶斯统计和机器学习的案例研究
- 批准号:
8203089 - 财政年份:2011
- 资助金额:
$ 17.87万 - 项目类别:
Conference and Participant Support for Mtg: Statistical Analysis of Neuronal Data
Mtg 的会议和参与者支持:神经元数据的统计分析
- 批准号:
8035444 - 财政年份:2010
- 资助金额:
$ 17.87万 - 项目类别:
Conference and Participant Support for Mtg: Statistical Analysis of Neuronal Data
Mtg 的会议和参与者支持:神经元数据的统计分析
- 批准号:
8225347 - 财政年份:2010
- 资助金额:
$ 17.87万 - 项目类别:
Conference and Participant Support for Mtg: Statistical Analysis of Neuronal Data
Mtg 的会议和参与者支持:神经元数据的统计分析
- 批准号:
7916133 - 财政年份:2010
- 资助金额:
$ 17.87万 - 项目类别:
Interdiscplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
8913097 - 财政年份:2006
- 资助金额:
$ 17.87万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
7213051 - 财政年份:2006
- 资助金额:
$ 17.87万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
8525367 - 财政年份:2006
- 资助金额:
$ 17.87万 - 项目类别:
相似国自然基金
面向一站式预约的门诊患者多检查动态调度优化研究
- 批准号:72371200
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向公平性的限行兼预约机制建模、分析与优化
- 批准号:72371010
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
面向集卡预约环境的港口集疏运道路作业计划与管控方法
- 批准号:52372303
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
考虑乘客消单行为的网约车拼车即时和预约订单联合派送优化研究
- 批准号:52302392
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑医患自适应行为的医生门诊序列预约调度优化
- 批准号:72301058
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficacy of a differentiated care intervention for adolescents transitioning to adult HIV care in Peru
秘鲁青少年向成人艾滋病毒护理过渡的差异化护理干预措施的效果
- 批准号:
10546049 - 财政年份:2022
- 资助金额:
$ 17.87万 - 项目类别:
Efficacy of a differentiated care intervention for adolescents transitioning to adult HIV care in Peru
秘鲁青少年向成人艾滋病毒护理过渡的差异化护理干预措施的效果
- 批准号:
10704639 - 财政年份:2022
- 资助金额:
$ 17.87万 - 项目类别:
Effectiveness of a Synergistic, Neuroplasticity-Based intervention for Rapid and Durable Suicide Risk Reduction
基于神经可塑性的协同干预措施对快速、持久降低自杀风险的有效性
- 批准号:
10264902 - 财政年份:2020
- 资助金额:
$ 17.87万 - 项目类别:
Effectiveness of a Synergistic, Neuroplasticity-Based intervention for Rapid and Durable Suicide Risk Reduction
基于神经可塑性的协同干预措施对快速、持久降低自杀风险的有效性
- 批准号:
10471401 - 财政年份:2020
- 资助金额:
$ 17.87万 - 项目类别:
Effectiveness of a Synergistic, Neuroplasticity-Based intervention for Rapid and Durable Suicide Risk Reduction
基于神经可塑性的协同干预措施对快速、持久降低自杀风险的有效性
- 批准号:
10684238 - 财政年份:2020
- 资助金额:
$ 17.87万 - 项目类别: