Manipulating Single-Molecule Enzyme Conformations and Activities
操纵单分子酶的构象和活性
基本信息
- 批准号:8069189
- 负责人:
- 金额:$ 30.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-05 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:6-hydroxymethyl-7,8-dihydropterinAdverse effectsAnti-Bacterial AgentsAntibioticsAreaAtomic Force MicroscopyBacteriaBindingBiochemical ReactionBiological ProcessCoupledCysteineDevelopmentDiphosphotransferasesEnergy TransferEnzymesFluorescenceFluorescence SpectroscopyFluorescent ProbesFolateFrequenciesGlassGoalsHealthHumanImaging TechniquesKnowledgeLaboratoriesLinkMeasurementMechanicsMethodologyMicroscopeMolecular ConformationMutationPathway interactionsPharmaceutical PreparationsProtein ConformationProtein DynamicsProteinsResearchScreening procedureSite-Directed MutagenesisSpectrum AnalysisStagingStructure-Activity RelationshipSulfhydryl CompoundsTechniquesTechnologyTimeVariantbasedrug developmentenzyme activityenzyme structureflexibilityfluorescence imaginginhibitor/antagonistlink proteinnext generationnovelnovel strategiesprogramsprotein functionprotein structure functionpublic health relevanceresearch and developmentresponsesingle molecule
项目摘要
DESCRIPTION (provided by applicant): The key goal of our proposed effort is to demonstrate the application of an unprecedented single-molecule spectroscopy technique and capability. This technique will be capable of manipulating and even controlling protein conformations and manipulating the enzyme protein activity by variation of at least 10:1 in real-time. Specifically, we propose to conduct a systematic technical development and demonstration. Our project consists of three primary aims: (1) Demonstrate correlated single-molecule FRET measurements and AFM single-molecule force pulling-holding manipulation (AFM-FRET) of the conformations of a key enzyme protein related to the biosynthetic pathway of most bacteria (the HPPK enzyme), important for antibiotics drug research and developments; (2) demonstrate single-molecule AFM-FRET analysis of loop sensitive HPPK enzymatic dynamics under mechanical force pulling and holding single-molecule enzyme proteins; and (3) demonstrate a 10:1 range of controlled enzyme reactivity for the HPPK protein by using AFM-FRET tip holding and oscillating single-molecule enzyme proteins. The technology and methodology for the real-time manipulation of protein conformations and activities will demonstrate the novel capability of manipulating single-molecule control/holding protein conformations and dynamics. Our project will provide a new stage in characterizing and analyzing the relationship between protein structure and function. This new stage will feature rapid and sensitive analyzes of protein structures and functions. For example, for various conformations and mutations of a specific enzyme protein involving in critical biological functions, we will be able to explore, analyze, and predict the dynamic function-structure relationship. Ultimately, the knowledge obtained from this project about the conformation sensitive HPPK activity and response to inhibitor binding will eventually be helpful for anti-biotic drug developments.
PUBLIC HEALTH RELEVANCE: Our proposed advance in single-molecule spectroscopy and manipulation will be critical for the next generation of single-molecule spectroscopy applicable on human health research: not only observing single-molecule protein dynamics but also be able to manipulate the enzyme reactivity and conformations in real time. We will apply this technical approach to the manipulation of the conformations and activity of enzymes of importance to antibiotics drug developments: a key enzyme protein related to the folate biosynthetic pathway of most bacteria, i.e., 6-hydroxymethyl-7,8- dihydropterin pyrophosphokinase (HPPK). Because that the folate biosynthetic pathway is absent from human being and critical for bacteria, it has been a hot research area in developing anti-bacterial drugs to attack the folate pathway without a harmful side-effect to human.
描述(由申请人提供):我们提出的努力的关键目标是证明使用前所未有的单分子光谱技术和能力。该技术将能够操纵甚至控制蛋白质构象,并通过实时变化至少10:1来操纵酶蛋白活性。具体而言,我们建议进行系统的技术发展和演示。我们的项目由三个主要目的组成:(1)展示了相关的单分子fret测量和AFM单分子拉力拉力拉力持续操纵(AFM-FRET)对与大多数细菌的生物合成途径相关的关键酶蛋白的构象的构象(HPPK enzyzyme),对抗生素和抗生素的重要性(重要); (2)证明了在机械力拉动和保持单分子酶蛋白下环环敏感HPPK酶动力学的单分子AFM-FRET分析; (3)通过使用AFM-FRET尖端固定和振荡单分子酶蛋白来证明HPPK蛋白的10:1受控酶反应性。实时操纵蛋白质构象和活动的技术和方法将证明操纵单分子控制/保持蛋白质构象和动力学的新功能。我们的项目将为表征和分析蛋白质结构与功能之间的关系提供一个新的阶段。这个新阶段将以蛋白质结构和功能的快速和敏感分析。例如,对于涉及关键生物学功能的特定酶蛋白的各种构象和突变,我们将能够探索,分析和预测动态功能结构关系。最终,从该项目获得的关于构象敏感的HPPK活性和对抑制剂结合的反应的知识最终将有助于抗生素药物的开发。
公共卫生相关性:我们提出的单分子光谱和操纵方面的提议对于适用于人类健康研究的下一代单分子光谱法至关重要:不仅可以观察单分子蛋白动力学,而且能够实时操纵酶的反应性和构象。我们将采用这种技术方法来操纵对抗生素的重要性的构象和活性:一种与大多数细菌的叶酸生物合成途径有关的关键酶蛋白,即6-羟基甲基甲基-7,8-二羟基二羟基二羟基丙糖蛋白pyrophophoppokinase(hhppppk)。因为人类没有叶酸生物合成途径,对细菌至关重要,因此它一直是开发抗细菌药物的热门研究领域,可以攻击叶酸途径而没有对人的有害副作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
H Peter Lu其他文献
H Peter Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('H Peter Lu', 18)}}的其他基金
Single-Molecule Patch-Clamp FRET Imaging Microscopy in Living Cells
活细胞中的单分子膜片钳 FRET 成像显微镜
- 批准号:
8538464 - 财政年份:2012
- 资助金额:
$ 30.54万 - 项目类别:
Single-Molecule Patch-Clamp FRET Imaging Microscopy in Living Cells
活细胞中的单分子膜片钳 FRET 成像显微镜
- 批准号:
8723847 - 财政年份:2012
- 资助金额:
$ 30.54万 - 项目类别:
Single-Molecule Patch-Clamp FRET Imaging Microscopy in Living Cells
活细胞中的单分子膜片钳 FRET 成像显微镜
- 批准号:
8917255 - 财政年份:2012
- 资助金额:
$ 30.54万 - 项目类别:
Single-Molecule Patch-Clamp FRET Imaging Microscopy in Living Cells
活细胞中的单分子膜片钳 FRET 成像显微镜
- 批准号:
8371932 - 财政年份:2012
- 资助金额:
$ 30.54万 - 项目类别:
Manipulating Single-Molecule Enzyme Conformations and Activities
操纵单分子酶的构象和活性
- 批准号:
8268423 - 财政年份:2010
- 资助金额:
$ 30.54万 - 项目类别:
Manipulating Single-Molecule Enzyme Conformations and Activities
操纵单分子酶的构象和活性
- 批准号:
8464146 - 财政年份:2010
- 资助金额:
$ 30.54万 - 项目类别:
Manipulating Single-Molecule Enzyme Conformations and Activities
操纵单分子酶的构象和活性
- 批准号:
7784946 - 财政年份:2010
- 资助金额:
$ 30.54万 - 项目类别:
In Vivo Characterization of Bacteria-mediated Extracellular Reduction of Chromium
细菌介导的细胞外铬还原的体内表征
- 批准号:
7572738 - 财政年份:2009
- 资助金额:
$ 30.54万 - 项目类别:
In Vivo Characterization of Bacteria-mediated Extracellular Reduction of Chromium
细菌介导的细胞外铬还原的体内表征
- 批准号:
7995995 - 财政年份:2009
- 资助金额:
$ 30.54万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Bacterial metabolism of catechol-O-methyltransferase inhibitors alters drug efficacy and toxicity
儿茶酚-O-甲基转移酶抑制剂的细菌代谢改变药物疗效和毒性
- 批准号:
10606184 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Inflammation-targeted delivery of corticosteroids using genetically engineered cellular nanoparticles
使用基因工程细胞纳米颗粒靶向炎症递送皮质类固醇
- 批准号:
10646914 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Development of a mechanistically novel synergistic adjuvant to partner with polymyxin antibiotics
开发一种与多粘菌素抗生素配合使用的新型机械协同佐剂
- 批准号:
10481682 - 财政年份:2022
- 资助金额:
$ 30.54万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10686200 - 财政年份:2022
- 资助金额:
$ 30.54万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10547384 - 财政年份:2022
- 资助金额:
$ 30.54万 - 项目类别: