Accelerating gas capture and conversion in aqueous systems
加速水系统中的气体捕获和转化
基本信息
- 批准号:RGPIN-2022-05398
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Capturing and solubilizing gases from dilute gaseous mixtures is a pressing technological need. As increasing greenhouse gas concentrations magnify the severity of extreme weather events such as floods, direct air capture is becoming increasingly important. Traditional methods for gas capture (gas scrubbers) are becoming obsolete given the energy requirements. New methods are urgently needed to accelerate gas-liquid mass transfer. This research program will study fundamental physico-chemical interactions at interfaces to accelerate retention and conversion of gases in aqueous systems. This novel approach will investigate triple solid-liquid-gas boundaries through the decimation of bulky gas volumes into thin gas sheets held stably between a microtextured solid and an absorbing aqueous solution like potassium hydroxide. By creating these thin, stable gas sheets over large areas, two interfaces will be created - gas-solid and gas-liquid interfaces that can be systematically studied for enhancing mass transfer. These thin sheets require a combination of advances in materials (solids with manipulatable advancing and receding contact angles) as well as advances in interfacial texture engineering (micro and nano textures that can hold stable gas films over areas exceeding 5 cm2). Like a paper towel hastening the evaporation of water, gas mass transfer will be significantly enhanced by using thin sheets that have been precisely designed using a framework that incorporates timescales and length-scales of interfacial interactions. The embodiment of thin gas films, while good for scientific study, can be scaled up to continuous processing. A key property is "pinning" where the gas-liquid interface is arrested on the solid. Zooming in to the micron length scales, the first question that will be answered is the stability of the layer as a function of surface microtexture parameters. In the surface chemistry regime (molecular length-scales), rare-earth ceramics will be studied. These have been shown to have large variations in contact angle hysteresis which offers knobs to control the shape of the gas-liquid interface and arrest the interface which is key to advance these systems. Advancing and receding contact angles, which hold key to pinning interfaces, are of particular interest. With thin sheets that can be rapidly solubilized, this research program aims to have the widest impact in direct capture of CO2 from air. Knowledge from this research program can also be applied to scrubbing sour gases such as H2S and SO2 from flue gas emissions. Canadian industries such as oil and gas, food processing, cosmetics, and transportation will strongly benefit from these technological advancements. This research program will also train several HQP with the skills to respond to the growing climate urgency.
从稀释的气态混合物中捕获和溶解气体是一种紧迫的技术需求。随着温室气体浓度的增加会放大极端天气事件(例如洪水)的严重性,直接空气捕获变得越来越重要。鉴于能量需求,传统的气体捕获方法(气体洗涤器)正在过时。迫切需要新的方法来加速气体液体传质。该研究计划将在界面上研究基本的物理化学相互作用,以加速水中气体的保留和转化。这种新颖的方法将通过将笨重的气体量拆除到微型固定固体和吸收性水溶液(如氢氧化钾)之间的稀薄气体板中,研究三重固液气体边界。通过在大面积上创建这些稀薄的稳定气体,将创建两个接口 - 可以系统地研究以增强传质的气体固体和气体式界面。这些薄薄的床单需要结合材料的进步(具有可操纵的前进和向后接触角的固体)以及界面纹理工程的进步(微型和纳米纹理,可以在超过5 cm2的区域内保持稳定的气膜)。就像纸巾加速水的蒸发一样,使用精确设计的薄纸可以显着增强气体传播,而这些薄板使用框架进行了精确设计的框架,该框架结合了时间表和界面相互作用的长度尺度。薄气膜的实施例虽然适合科学研究,但可以扩展到连续处理。关键特性是“固定”,其中气体液体接口在固体上被捕。放大至微米长度尺度,将回答的第一个问题是该层的稳定性,这是表面微XT的函数。在表面化学状态(分子长度尺度)中,将研究稀土陶瓷。这些事实证明,它们在接触角滞后时具有较大的变化,该磁滞提供了旋钮来控制气体界面的形状并阻止界面,这是推进这些系统的关键。具有固定界面的钥匙的前进和后退接触角特别感兴趣。凭借可以快速溶解的薄纸,该研究计划旨在直接从空气中捕获CO2最广泛的影响。该研究计划的知识也可以应用于擦洗诸如H2S和SO2等烟气排放的酸性气体。加拿大工业,例如石油和天然气,食品加工,化妆品和运输将从这些技术进步中受益匪浅。该研究计划还将培训几个HQP,以应对不断增长的气候紧迫性的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khan, Sami其他文献
Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides
- DOI:
10.1063/1.4907756 - 发表时间:
2015-02-09 - 期刊:
- 影响因子:4
- 作者:
Khan, Sami;Azimi, Gisele;Varanasi, Kripa K. - 通讯作者:
Varanasi, Kripa K.
Soft-tissue coverage of the elbow: An outcome analysis and reconstructive algorithm
- DOI:
10.1097/01.prs.0000259182.53294.67 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:3.6
- 作者:
Choudry, Umar H.;Moran, Steven L.;Khan, Sami - 通讯作者:
Khan, Sami
Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts
- DOI:
10.1016/j.apcatb.2012.01.035 - 发表时间:
2012-05-18 - 期刊:
- 影响因子:22.1
- 作者:
Azadi, Pooya;Khan, Sami;Farnood, Ramin - 通讯作者:
Farnood, Ramin
The role of antibiotics in the treatment of acute rhinosinusitis in children: a systematic review
- DOI:
10.1136/archdischild-2012-302983 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:5.2
- 作者:
Cronin, Michael John;Khan, Sami;Saeed, Shakir - 通讯作者:
Saeed, Shakir
Catalyst-proximal plastrons enhance activity and selectivity of carbon dioxide electroreduction
- DOI:
10.1016/j.xcrp.2020.100318 - 发表时间:
2021-02-24 - 期刊:
- 影响因子:8.9
- 作者:
Khan, Sami;Hwang, Jonathan;Varanasi, Kripa K. - 通讯作者:
Varanasi, Kripa K.
Khan, Sami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khan, Sami', 18)}}的其他基金
Accelerating gas capture and conversion in aqueous systems
加速水系统中的气体捕获和转化
- 批准号:
DGECR-2022-00082 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Robust Nano-engineered Composite Ceramic Surfaces for Harsh Environments with Applications to Corrosion and Fouling Mitigation
适用于恶劣环境的坚固纳米工程复合陶瓷表面,适用于腐蚀和污垢缓解
- 批准号:
487258-2016 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
Robust Nano-engineered Composite Ceramic Surfaces for Harsh Environments with Applications to Corrosion and Fouling Mitigation
适用于恶劣环境的坚固纳米工程复合陶瓷表面,适用于腐蚀和污垢缓解
- 批准号:
487258-2016 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Postgraduate Scholarships - Doctoral
相似国自然基金
用于高温二氧化碳捕获的混合导体膜材料设计、制备及渗透机理研究
- 批准号:21905270
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
设计合成光控型气体储存-释放性质的多孔芳香骨架
- 批准号:21805109
- 批准年份:2018
- 资助金额:25.7 万元
- 项目类别:青年科学基金项目
液滴撞击过程中气体捕获及微纳气泡生成的机理研究
- 批准号:11802226
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
用于气体分离的多孔骨架-流体分离介质复合膜的理论设计与模拟
- 批准号:21803074
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
面向CO2吸收的疏水陶瓷膜孔道内气体传质行为研究
- 批准号:21706114
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CO2 capture from cement flue gas
从水泥烟气中捕获二氧化碳
- 批准号:
10049211 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Investment Accelerator
Accelerating gas capture and conversion in aqueous systems
加速水系统中的气体捕获和转化
- 批准号:
DGECR-2022-00082 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Novel Solid Materials and Processes for CO2 Capture from Cogeneration Flue Gas
从热电联产烟气中捕获二氧化碳的新型固体材料和工艺
- 批准号:
572531-2022 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
Micro Carbon Capture and Utilization: A Canadian Solution for Low Carbon Heating with Natural Gas
微碳捕获和利用:加拿大天然气低碳供暖解决方案
- 批准号:
519888-2017 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Development of innovative catalyst process contributing to the promise of COP21 for solid carbon capture from green house gas
开发创新催化剂工艺,为 COP21 承诺从温室气体中捕获固体碳做出贡献
- 批准号:
21K18317 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)