Pineal Regulation: Neural, transsynaptic and intracellular control

松果体调节:神经、突触和细胞内控制

基本信息

项目摘要

Analysis of global gene expression: Studies are in progress which have characterized gene expression in the pineal gland. The first stage has involved analysis of the rat pineal gland: "The rodent pineal transcriptome was investigated ..... using microarray gene expression. Comparison of midday and midnight expression profiles revealed that a global >2-fold change in the expression of 1000 genes, 2/3 of which increase at night. Among these, 400 increase >4- fold in expression; studies in organ culture reveal that in nearly all cases, the expression of the highly upregulated genes is induced by treatment with NE or cyclic nucleotide analogs. These findings are consistent with the conclusion that NE-cyclic nucleotide signaling is the primary mechanism responsible for the nocturnal increase in gene expression. However, it is also clear that other mechanisms are involved, because a small number of highly rhythmic genes are not induced or are weakly induced by NE treatment. Comparison of the level of gene expression in the pineal gland to the median expression in other tissues indicates that a set of > 300 genes are expressed >8- fold higher in the pineal gland. A significant subset of the most highly expressed genes encode proteins involved in melatonin synthesis and the control of this process, including signalling via adrenergic receptors and second messengers including cyclic nucleotides, Ca++ and phospholipids. Clusters of highly expressed genes are associated with the cellular biology of thyroid hormone, retinoid acid, glutamate biology; and, with metal ion homeostasis, membrane trafficking, and the immune response. Other highly and/or rhythmically expressed genes also encode transcription factors, ion channels, transporters, receptors, regulatory molecules and secreted products that have not previously appeared in the pineal literature. Comparison of the pineal gene expression profile to that of several other tissues adds to the evidence that the pineal gland is most similar to the retina by expanding the number of genes that are highly expressed exclusively in these two tissues. This study indicates that control of pineal biology is significantly more complex than previously thought, that the number of highly expressed genes in the pineal gland and retina is higher than previously thought, and also provides molecular evidence to suspect that the gland might function outside of the highly conserved role it plays in melatonin production." From (Bailey et al, in preparation). The work on the rodent pineal gland is being followed up with similar work on the pineal gland of the monkey and human, so as to determine the similarity of the patterns of gene expression in these three tissues. The results of the analysis of the rodent pineal gland has triggered a number of studies, some of which have been published, which have focused on genes that have been highlighted by the microarray studies. An example is detailed in HD000095-37. Control of dopamine signal transduction in the pineal gland: Dopamine plays a broad role in biology through actions mediated by specific G-protein coupled receptors. "We have discovered that the expression of the gene that encodes the dopamine D4 receptor (Drd4), can change rapidly. Drd4 mRNA increases 20-fold at night in the pineal gland and retina to levels that are >10-fold higher than those in other tissues The abundance of pineal Drd4 transcripts is controlled by the well described circadian regulatory system that controls pineal function. In vitro studies indicate that Drd4 is induced by an And gate mechanism which is activated by adrenergic /cyclic AMP signaling and is dependent on thyroid hormone (T3). These findings point to an important role of dopamine/Drd4 signalling in the pineal gland and retina. On a more general level, it appears reasonable to consider that dopamine/D4Rsignaling in other tissues could reflect the interaction of cyclic AMP and T3." (From Kim et al,) Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina: "Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine ishigh during daytime adapting the retina to light, whereas melatonin is high during nighttimeparticipating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin in the photoreceptors via Drd4-receptors located on the cell membrane of these cells. In this study, we show by semiquantitative in situ hybridization a prominent day/night variation in Drd4 expression in the retina of the Sprague Dawley rat with a peak during the nighttime. Drd4 expression is seen in all retinal layers but the nocturnal increase is confined to the photoreceptors. Retinal Drd4 expression is not affected by removal of the sympathetic input to the eye, but triiodothyronine treatment induces Drd4 the expression in the photoreceptors. In a developmental series, we show that the expression of Drd4 is restricted to postnatal stages with a peak at postnatal day 12. The high Drd4 expression in the rat retinal photoreceptors during the night supports physiological and pharmacologic evidence that the Drd4 receptor is involved in the dopaminergic inhibition of melatonin synthesis upon light stimulation. The sharp increase of Drd4 expression at a specific postnatal time suggests that dopamine is involved in retinal development." Control of cyclic AMP degradation: "The pineal gland is a photoneuroendocrine transducer that influences circadian and circannual dynamics of many physiological functions via the daily rhythm in melatonin production and release. Melatonin synthesis is stimulated at night by a photoneural system through which pineal adenylate cyclase is adrenergically activated, resulting in an elevation of cAMP. cAMP enhances melatonin synthesis through actions on several elements of the biosynthetic pathway. cAMP degradation also appears to increase at night due to an increase in phosphodiesterase (PDE) activity, which peaks in the middle of the night. Here, it was found that this nocturnal increase in PDE activity results from an increase in the abundance of PDE4B2 mRNA (approximately 5-fold; doubling time, approximately 2 h). The resulting level is notably higher (>6-fold) than in all other tissues examined, none of which exhibit a robust daily rhythm. The increase in PDE4B2 mRNA is followed by increases in PDE4B2 protein and PDE4 enzyme activity. Results from in vivo and in vitro studies indicate that these changes are due to activation of adrenergic receptors and a cAMP-dependent protein kinase A mechanism. Inhibition of PDE4 activity during the late phase of adrenergic stimulation enhances cAMP and melatonin levels. The evidence that PDE4B2 plays a negative feedback role in adrenergic/cAMP signaling in the pineal gland provides the first proof that cAMP control of PDE4B2 is a physiologically relevant control mechanism in cAMP signaling." From (1) Control of circadian rhythms by the Ptprn and Ptprn2. We have participated in an effort to describe the role that two synaptic vesicle proteins play in circadian biology. "We have found that synaptic vesicle proteins islet antigen 2(IA-2, Ptprn) and islet antigen 2-beta (IA-2-B, Ptprn2) are essential for circadian rhythms in activity, blood pressure, heart rate and temperature. IA-2 and IA-2-B are expressed in the suprachiasmatic nucleus (SCN), the master circadian oscillator in mammals the SCN of animals lacking these genes exhibit patterns of electrical activity which indicate that electrical activity of the SCN is not coherently rhythmic and that total activity is markedly reduced. IA-2 and IA-2-B may act in the SCN to facilitate cell-cell communication.
全球基因表达的分析:正在进行的研究中,这些研究表征了松果体中基因表达。 第一阶段涉及对大鼠松果体的分析:“研究了啮齿动物的松果体转录组.....使用微阵列基因表达。比较中午和午夜表达谱的比较表明,1000个基因表达的全局> 2倍,其中2/3在夜间增加了2/3,在这些基因上增加了2/3,在这些中,有400次在表达中增加了> 4-折叠> 4-折叠> 4-折叠;几乎是centriq extrend extriend extriend exection;几乎是在各种情况下,或者在各种情况下,或者在各种情况下均在所有情况下,在所有这些中,或者在所有情况下均表现出来。这些发现的核苷酸类似物与NE-Cyclic核苷酸信号传导是导致基因表达的夜间增加的结论,但是,其他机制也显然涉及其他机制。在松果体中,一组> 300个基因表达> 8倍。 最高表达基因的显着子集编码涉及褪黑激素合成的蛋白质以及对该过程的控制,包括通过肾上腺素能受体和包括环状核苷酸,CA ++和磷脂的第二个使者信号传导。 高度表达基因的簇与甲状腺激素,视视视感素酸,谷氨酸生物学的细胞生物学有关。并具有金属离子稳态,膜运输和免疫反应。 其他高度和/或有节奏表达的基因还编码转录因子,离子通道,转运蛋白,受体,调节分子和分泌的产物,这些产品以前尚未出现在松果文献中。 松果基因表达谱与其他几个组织的比较增加了通过扩大在这两种组织中仅高度表达的基因的数量,这表明松果体与视网膜最相似。 这项研究表明,对松果体生物学的控制要比以前认为的要复杂得多,松果体和视网膜中高表达基因的数量比以前想象的要高,并且还提供了分子证据,以怀疑该腺可能在梅拉蛋白产生中发挥的高度保守的作用,从而在梅拉蛋白产生中发挥作用。” 在啮齿动物和人类的松果体上进行了类似的工作,在啮齿动物松果体上的工作进行了跟踪,以确定这三个组织中基因表达模式的相似性。 对啮齿动棉布的分析结果触发了许多研究,其中一些研究的重点是由微阵列研究突出显示的基因。 HD000095-37中详细介绍了一个示例。 松果体中多巴胺信号转导的控制:多巴胺通过特异性G蛋白偶联受体介导的作用在生物学中起着广泛的作用。 "We have discovered that the expression of the gene that encodes the dopamine D4 receptor (Drd4), can change rapidly. Drd4 mRNA increases 20-fold at night in the pineal gland and retina to levels that are >10-fold higher than those in other tissues The abundance of pineal Drd4 transcripts is controlled by the well described circadian regulatory system that controls pineal function. In vitro studies indicate that Drd4 is由肾上腺素/环状AMP信号激活的栅极和栅极机制依赖于甲状腺激素(T3)表明多巴胺/DRD4信号在松果腺和视网膜中的重要作用。 (来自Kim等人) 多巴胺受体D4表达在成年和大鼠视网膜中的定位和调节:“多巴胺和褪黑激素的水平在大鼠视网膜中表现出昼夜节律。在白天将视网膜调整为光线的白天,多巴胺等体状在夜间夜间分配中呈现在视网膜上的适应性降低,而在夜间分配中很高。通过在本研究的细胞上,通过DRD4受体的光感受器中的褪黑激素。我们通过半杂交在夜间preminter the premintil the premintal preptres中,通过半夜间杂交显示了drd4的明显白天/夜晚表达不会受到对眼睛的交感神经输入的影响,但是三碘甲氨酸的处理在发育系列中诱导了DRD4的表达。在光刺激下,参与了褪黑激素合成的多巴胺能抑制。在特定的产后时间,DRD4表达的急剧增加表明多巴胺参与视网膜发育。” 控制环状AMP降解的控制:“松果体是一种光无内分泌换能器,通过每日节奏在褪黑激素的产生和释放中影响许多生理功能的昼夜节律和循环动力学。褪黑激素的合成在夜间刺激了刺激性培养基的刺激性培养基,从而刺激了刺激性培养基。通过对生物合成途径的几个元素的作用,由于磷酸二酯酶的增加(PDE)的伴奏似乎也增加所得水平明显高(> 6倍)比所有其他研究的组织都高,没有表现出强大的每日节奏。体内和体外研究的结果表明,这些变化是由于肾上腺素能受体的激活和cAMP依赖性蛋白激酶的一种机制。在肾上腺素能刺激的后期抑制PDE4活性会增强营地和褪黑激素水平。松果体中PDE4B2在肾上腺/cAMP信号传导中起负面反馈作用的证据提供了第一个证据,证明PDE4B2的CAMP控制是cAMP信号中的生理相关控制机制。” PTPRN和PTPRN2对昼夜节律的控制。 我们已经参与了描述两个突触囊泡蛋白在昼夜节律生物学中的作用。 “我们发现,突触囊泡蛋白胰岛抗原2(IA-2,PTPRN)和胰岛抗原2-β(IA-2-B,PTPRN2)对于昼夜节律的节奏至关重要缺乏这些基因表现出电活动的模式,表明SCN的电活动不是连贯的节奏,并且总活性显着降低了IA-2和IA-2-B。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Klein其他文献

David Klein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Klein', 18)}}的其他基金

Pineal Regulation: Developmental and Circadian Changes in the Transcriptome
松果体调节:转录组的发育和昼夜节律变化
  • 批准号:
    8351219
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Molecular basis of development
松果体调节:发育的分子基础
  • 批准号:
    7734834
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Neuroendocrine immune relationship
松果体调节:神经内分泌免疫关系
  • 批准号:
    8149221
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Control of arylalkylamine N-acetyltransferase
松果体调节:芳烷基胺 N-乙酰转移酶的控制
  • 批准号:
    7968763
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Molecular basis of development
松果体调节:发育的分子基础
  • 批准号:
    8149361
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Molecular basis of development
松果体调节:发育的分子基础
  • 批准号:
    8941521
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Neural, transsynaptic and intracellular control
松果体调节:神经、突触和细胞内控制
  • 批准号:
    8149362
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Molecular basis of development
松果体调节:发育的分子基础
  • 批准号:
    8351220
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Neural, transsynaptic and intracellular control mechanisms
松果体调节:神经、突触和细胞内控制机制
  • 批准号:
    8736908
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:
Pineal Regulation: Molecular basis of development
松果体调节:发育的分子基础
  • 批准号:
    8553950
  • 财政年份:
  • 资助金额:
    $ 36.02万
  • 项目类别:

相似国自然基金

腺苷酸环化酶ADCY3调控鸡肌内脂肪沉积的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
腺苷酸环化酶ADCY3调控鸡肌内脂肪沉积的作用及机制研究
  • 批准号:
    32202656
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
腺苷酸环化酶ZmRPP13-LK3催化生成的cAMP在玉米耐高温胁迫中的作用机制解析
  • 批准号:
    32171945
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
CUL3和ARIH1介导的腺苷酸环化酶异源敏化在吗啡依赖发生中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
灰霉菌腺苷酸环化酶调节光响应与致病性的机理研究
  • 批准号:
    31972121
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

A Novel Pharmacological Inhibitor of Adenylyl Cyclase Type 5 to Treat Alzheimer's Disease
一种治疗阿尔茨海默病的新型 5 型腺苷酸环化酶药理抑制剂
  • 批准号:
    10608477
  • 财政年份:
    2022
  • 资助金额:
    $ 36.02万
  • 项目类别:
Small Heat Shock Proteins in Human Airway Smooth Muscle Tone and Pathophysiology
人呼吸道平滑肌张力和病理生理学中的小热休克蛋白
  • 批准号:
    8903540
  • 财政年份:
    2014
  • 资助金额:
    $ 36.02万
  • 项目类别:
Modulation of KCNQ1 channel activity
KCNQ1 通道活性的调节
  • 批准号:
    9899256
  • 财政年份:
    2014
  • 资助金额:
    $ 36.02万
  • 项目类别:
Lipid Metabolism and Steatosis in Liver
肝脏的脂质代谢和脂肪变性
  • 批准号:
    8443061
  • 财政年份:
    2013
  • 资助金额:
    $ 36.02万
  • 项目类别:
Lipid Metabolism and Steatosis in Liver
肝脏的脂质代谢和脂肪变性
  • 批准号:
    8971972
  • 财政年份:
    2013
  • 资助金额:
    $ 36.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了