DNA and RNA Stability in Glycine Betaine, TMAO, and Urea Solutions: Correlating S
甘氨酸甜菜碱、TMAO 和尿素溶液中 DNA 和 RNA 的稳定性:关联 S
基本信息
- 批准号:7882805
- 负责人:
- 金额:$ 19.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenineAmino AcidsAreaBase CompositionBase PairingBase SequenceBathingBetaineBiochemical ReactionBiological ProcessBiopolymersChemicalsComputer SimulationCytosineDNADNA MaintenanceDiseaseDouble-Stranded RNAElementsEnvironmentExclusionFoundationsGuanineGuanine + Cytosine CompositionHumanHydration statusIndividualInvestigationIonic StrengthsLipidsMediatingMedicalModelingMolecular ConformationMolecular StructureNucleic Acid FoldingNucleic Acid PrecursorsNucleic AcidsNucleosidesNucleotidesPhysiologicalPlayProcessProteinsRNARNA StabilityRibonucleosidesRoleSaltsSiteSolutionsSolventsStructureStudentsStudy SectionSurfaceTelomerase RNA ComponentThymineTrainingTransition TemperatureUnited States National Institutes of HealthUracilUreaWaterWorkaqueousbasecollegedesignfunctional groupimprovedin vivoinsightmolecular dynamicsnucleic acid stabilitynucleic acid structurenucleoside monophosphatepressureprotein structurepublic health relevanceresearch studysolutestemsugartrimethyloxaminevapor
项目摘要
DESCRIPTION (provided by applicant): Cellular biochemical reactions involving nucleic acids occur in aqueous solutions of salts, cosolutes, and biopolymers, such as proteins. These cosolutes, small organic solutes such as amino acids, nucleic acid precursors, simple sugars, and metabolites, can have dramatic influences on the structure and stability of nucleic acids. The long-term objective of this project is to elucidate the mechanism of cosolute-modulated folded nucleic acid stability, so as to better understand cosolute interactions with biopolymers and how these interactions influence biopolymer structural change and biochemical reactions. Additionally, these experiments will generate a cadre of undergraduate students at St. Olaf College that are trained to address biopolymer folding problems in a modern medical setting. The investigations detailed in this proposal will quantify accumulation or exclusion of glycine betaine, trimethylamine oxide (TMAO), and urea at nucleic acid surfaces to correlate cosolute interactions with chemical functional groups on the nucleic acid surfaces. The specific aims of this proposal will combine thermal unfolding and vapor pressure osmometry (VPO) studies with molecular dynamics (MD) computer simulations to: 1.) assess the strength of glycine betaine, TMAO, and urea as nucleic acid secondary structure stabilizers/destabilizers by quantifying the accumulation or exclusion of these cosolutes from chemical functional groups on double-helical DNA and RNA surfaces exposed during thermal denaturation; MD simulations will also be used to predict the roles solvent accessible chemical functional groups and base sequence-mediated hydration play in cosolute accumulation or exclusion at the double-helical DNA or RNA surface; 2.) quantify the accumulation or exclusion of glycine betaine, TMAO, and urea from nucleoside 5'-monophosphates (NMPs), the individual building blocks of DNA and RNA secondary and tertiary structures, using VPO and MD simulations and couple these results with those from the first specific aim to elucidate the mechanism of cosolute stabilization or destabilization of DNA and RNA double-helices; 3.) quantify the accumulation or exclusion of glycine betaine, TMAO, and urea from ribodinucleoside monophosphates (rDMPs) using VPO and MD simulations to assess the roles of base nearest-neighbor and stacking in cosolute interactions with DNA and RNA secondary and tertiary structures. These experiments will provide a foundation for an improved understanding of nucleic acid structural stability in cellular environments and a broader understanding of biopolymer folding and unfolding processes, leading to insights into biopolymer function and biopolymer folding diseases.
PUBLIC HEALTH RELEVANCE: Secondary and tertiary structures of nucleic acids (DNA and RNA) are essential for proper biological function. This project seeks to understand how cellular solutes such as metabolites, amino acids, and sugars facilitate the gain or loss of nucleic acid structure. The experiments detailed in this proposal will improve our understanding of nucleic acid folding and unfolding processes and provide insights into nucleic acid function and biopolymer folding diseases.
描述(由申请人提供):涉及核酸的细胞生化反应发生在盐,宇宙和生物聚合物的水溶液中,例如蛋白质。这些杂质,小的有机溶质,例如氨基酸,核酸前体,简单的糖和代谢物,对核酸的结构和稳定性产生巨大影响。该项目的长期目标是阐明颜色调节折叠核酸稳定性的机制,以便更好地理解与生物聚合物的宇宙相互作用,以及这些相互作用如何影响生物聚合物的结构变化和生化反应。此外,这些实验将在圣奥拉夫学院(St. Olaf College)创建一群本科生,并接受了培训,可以解决现代医疗环境中的生物聚合物折叠问题。该提案中详细介绍的研究将量化核酸表面上的甘氨酸甜菜碱,三甲胺(TMAO)和尿素的积累或排除,以将颜色相互作用与核酸表面上的化学官能团相关。 The specific aims of this proposal will combine thermal unfolding and vapor pressure osmometry (VPO) studies with molecular dynamics (MD) computer simulations to: 1.) assess the strength of glycine betaine, TMAO, and urea as nucleic acid secondary structure stabilizers/destabilizers by quantifying the accumulation or exclusion of these cosolutes from chemical functional groups on double-helical DNA and RNA surfaces在热变性期间暴露; MD模拟还将用于预测溶剂可访问的化学官能团和基础序列介导的水合在颜色的积累中或在双螺旋DNA或RNA表面排除的作用; 2.) quantify the accumulation or exclusion of glycine betaine, TMAO, and urea from nucleoside 5'-monophosphates (NMPs), the individual building blocks of DNA and RNA secondary and tertiary structures, using VPO and MD simulations and couple these results with those from the first specific aim to elucidate the mechanism of cosolute stabilization or destabilization of DNA and RNA double-helices; 3.)使用VPO和MD模拟评估基本邻居邻居和综合相互作用在与DNA和RNA二级和tertiary结构的综合相互作用中,使用核核苷单磷酸盐(RDMP)量化甘氨酸,tmao和尿素的积累或排除。这些实验将为改善细胞环境中核酸结构稳定性的理解和对生物聚合物折叠和展开过程的更广泛理解提供基础,从而深入了解生物聚合物功能和生物聚合物折叠疾病。
公共卫生相关性:核酸(DNA和RNA)的二级和三级结构对于适当的生物学功能至关重要。该项目试图了解细胞溶液如何促进核酸结构的增益或损失等细胞溶液。该提案中详述的实验将提高我们对核酸折叠和展开过程的理解,并提供对核酸功能和生物聚合物折叠疾病的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GREGORY W MUTH其他文献
GREGORY W MUTH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新一代精准、安全、适用范围更广的腺嘌呤碱基编辑器的开发及其在基因治疗中的应用研究
- 批准号:32371535
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
烟酰胺腺嘌呤二核苷酸从头合成新途径的发现与解析
- 批准号:32370058
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新型脂质多聚复合物的腺嘌呤碱基编辑系统对高草酸尿症的基因治疗研究
- 批准号:52373134
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于串联反应的N6-甲基腺嘌呤选择性检测方法研究
- 批准号:22307104
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
N6-腺嘌呤甲基化修饰调控玉米抗旱性的分子机制研究
- 批准号:32370633
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Unravelling highly pathogenic influenza virus emergence
揭开高致病性流感病毒出现的谜团
- 批准号:
10718091 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
DNAzymes for Site-Specific DNA and RNA Nucleobase Modification
用于位点特异性 DNA 和 RNA 核碱基修饰的 DNAzyme
- 批准号:
10630686 - 财政年份:2023
- 资助金额:
$ 19.56万 - 项目类别:
Identifying Novel Photic Inputs to the Drosophila Circadian/Arousal Neural Network for Behavioral Manipulation
识别果蝇昼夜节律/唤醒神经网络的新光输入以进行行为操纵
- 批准号:
10314992 - 财政年份:2021
- 资助金额:
$ 19.56万 - 项目类别:
Identifying Novel Photic Inputs to the Drosophila Circadian/Arousal Neural Network for Behavioral Manipulation
识别果蝇昼夜节律/唤醒神经网络的新光输入以进行行为操纵
- 批准号:
10471197 - 财政年份:2021
- 资助金额:
$ 19.56万 - 项目类别: