A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
基本信息
- 批准号:7891238
- 负责人:
- 金额:$ 4.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsBayesian MethodBioinformaticsBiologicalBiological ModelsCancer CenterCandidate Disease GeneCell physiologyClinicalCodeCommunitiesComplexDataData SetDiseaseEpidemiologyEthnic OriginFamily Cancer HistoryFirst Degree RelativeGenderGenesGeneticGenetic CounselingGenetic MarkersGenetic Predisposition to DiseaseGenetic StructuresGenomeGenome ScanGrantIndividualKnowledgeLeadLeftLinkage DisequilibriumLogistic RegressionsMalignant NeoplasmsMalignant neoplasm of lungMarkov ChainsMethodological StudiesMethodsModelingPathway interactionsPatternPrevention ResearchPrevention strategyProcessProteinsRecording of previous eventsRelative (related person)ReportingResearchResearch PersonnelRiskSample SizeSamplingSimulateSingle Nucleotide PolymorphismSmokerSmokingStagingStructureTechniquesTestingTexasTobaccoTrustUncertaintyUniversitiesalcohol exposurecancer preventioncase controldesigndisorder riskdrinkingfallsgene discoverygenetic analysisgenetic associationgenetic risk factorgenome wide association studygenome-wideindexinginsightlung cancer preventionmathematical modelnovelpreventresponsesimulationsuccesstooltrait
项目摘要
DESCRIPTION (provided by applicant):
A key component to preventing cancer is uncovering the genetics behind various cancers and the complex traits and diseases that lead to cancer. To uncover the genetic etiology for cancers and other complex diseases or traits, it is necessary to use methods that jointly consider multiple genetic components underlying the disease. Genome wide association (GWA) studies use methods to scan the genome looking for possible genetic associations with disease risk. However, many GWA studies perform the analysis using a univariate approach - treating each genetic marker as independent. Recently, methods for simultaneous significance testing and multivariate hierarchical models have started to consider multiple genes simultaneously, rather than univariately. While considering markers simultaneously, these methods restrict themselves to the assumption that when scanning the genome, the number of genes detected will be very small compared to the number of genes investigated. In response, we propose to develop novel, more powerful tools that use Bayesian model averaging methods to include genetic structure in the models, while simultaneously searching for genes in a complex disease, such as lung cancer, on a genome wide scale. Such models that include biological information can increase the power to detect small contributors to risk for complex diseases, and can still include sparsity information that controls for false positives. Recently, we completed a methodological study showing that Bayesian model averaging performs better than standard selection techniques using multivariate logistic regression in a hypothesis driven or candidate gene type approach. The central theme of this proposal is to develop Bayesian model averaging methods that incorporate genetic structure inherent to markers used in GWA studies that can also search through the immense number of markers available for GWA studies. We propose to develop fast Markov chain Monte Carlo algorithms for Bayesian model averaging techniques. We will calibrate the newly developed statistical techniques using simulation studies, and apply the new and calibrated methods to perform a GWA study of lung cancer using data already available at M. D. Anderson Cancer Center. The significance of this proposal is to develop new methods of performing GWA studies that will incorporate available biological information that can increase power and control false positives to detect genetic factors contributing to cancer.
描述(由申请人提供):
预防癌症的一个关键部分是揭示各种癌症背后的遗传学以及导致癌症的复杂特征和疾病。为了揭示癌症和其他复杂疾病或性状的遗传病因,有必要使用共同考虑疾病背后的多种遗传成分的方法。全基因组关联 (GWA) 研究使用扫描基因组的方法,寻找与疾病风险可能存在的遗传关联。然而,许多 GWA 研究使用单变量方法进行分析 - 将每个遗传标记视为独立的。最近,同时显着性检验和多变量层次模型的方法已开始同时考虑多个基因,而不是单变量。在同时考虑标记的同时,这些方法仅限于这样的假设:扫描基因组时,检测到的基因数量与研究的基因数量相比非常小。为此,我们建议开发新颖、更强大的工具,使用贝叶斯模型平均方法将遗传结构纳入模型中,同时在全基因组范围内搜索肺癌等复杂疾病中的基因。包含生物信息的此类模型可以提高检测复杂疾病风险的小因素的能力,并且仍然可以包含控制误报的稀疏信息。最近,我们完成了一项方法学研究,表明贝叶斯模型平均比在假设驱动或候选基因类型方法中使用多元逻辑回归的标准选择技术表现更好。该提案的中心主题是开发贝叶斯模型平均方法,该方法结合了 GWA 研究中使用的标记固有的遗传结构,也可以搜索可用于 GWA 研究的大量标记。我们建议为贝叶斯模型平均技术开发快速马尔可夫链蒙特卡罗算法。我们将利用模拟研究校准新开发的统计技术,并利用 M.D. 安德森癌症中心现有的数据应用新的校准方法进行肺癌 GWA 研究。该提案的意义在于开发进行 GWA 研究的新方法,该方法将整合现有的生物信息,从而提高检测导致癌症的遗传因素的能力并控制误报。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D SWARTZ其他文献
MICHAEL D SWARTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D SWARTZ', 18)}}的其他基金
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9249077 - 财政年份:2016
- 资助金额:
$ 4.63万 - 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9035008 - 财政年份:2016
- 资助金额:
$ 4.63万 - 项目类别:
A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
- 批准号:
8182516 - 财政年份:2009
- 资助金额:
$ 4.63万 - 项目类别:
A Novel Bayesian Model Averaging Approach for Genome Wide Association Studies
用于全基因组关联研究的新型贝叶斯模型平均方法
- 批准号:
7751499 - 财政年份:2009
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7828080 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7631262 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
8196515 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7264806 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
7419010 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
Bayesian Hierarchical Risk Models: Nutrition, Genes, & Environment Interactions
贝叶斯分层风险模型:营养、基因、
- 批准号:
8210965 - 财政年份:2007
- 资助金额:
$ 4.63万 - 项目类别:
相似国自然基金
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Sharp Neonatal Research Institute Clinical Center (Sharp NRI-CC)
夏普新生儿研究所临床中心 (Sharp NRI-CC)
- 批准号:
10683030 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别: