Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
基本信息
- 批准号:7285550
- 负责人:
- 金额:$ 44.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-11 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:Blood flowBrainCell NucleusCell modelCharacteristicsComputer SimulationDevelopmentDevicesDoctor of PhilosophyElectroencephalographyExplosionFeasibility StudiesFrequenciesFunctional Magnetic Resonance ImagingFutureHumanImageImaging TechniquesInjection of therapeutic agentInvestigationLaboratoriesLiteratureLocalizedMagnetic ResonanceMagnetic Resonance ImagingMagnetismMagnetoencephalographyMeasurableMeasurementMeasuresMethodsMicroscopicMiningModalityModelingMorphologic artifactsNatureNeuronsNoiseNuclearNuclear Magnetic ResonanceNumbersPatternPhasePhysiologic pulsePopulationPredispositionProbabilityProcessProtocols documentationProtonsPulse takingQuantum MechanicsRangeRateRelaxationResearchResearch PersonnelResolutionSamplingSignal TransductionSpeedStructureTechniquesTechnologyTestingTimeTissuesTodayVariantVisual CortexWidthWorkabsorptionbaseconceptdensitydesigndetectorelectric fieldhemodynamicshuman subjectinterestmagnetic fieldmodel developmentnovelprogramsquantumrelating to nervous systemresearch studyresponsesensorsuperconducting quantum interference devicevector
项目摘要
DESCRIPTION (provided by applicant):
We propose to demonstrate the feasibility of using nuclear magnetic resonance (NMR) techniques at ultra- low fields (ULF) to directly image neuronal currents in the human brain. We hypothesize that neuronal currents (both intra- and extra-cellular) will interact with the proton spins in tissue resulting in a measurable change in the NMR signal that can be imaged with existing magnetic resonance imaging (MRI) techniques at ULF. This proposal is in response to RFA-EB-05-001: "New Ways to Image Neural Activity." MRI spatially encodes the NMR signature of nuclei, typically protons, in a volume of interest. Today's high-field (HF) MRI machines employ static magnetic fields in the 1.5 T to above 9 T range to yield exquisite anatomical features. The last decade has also witnessed an explosion in functional MRI (fMRI) research that measures hemody- namic responses; however, as this RFA notes, such responses are relatively sluggish and only indirectly related to electrophysiological processes. Magnetoencephalography (MEG) and electroencephalography (EEG) are direct measures of the external magnetic and electric fields generated by neuronal currents. While these modalities yield detailed temporal information, the spatial localization must be inferred from highly-spe-cific spatial modeling priors. The electrophysiological "imaging" in MEG and EEG is therefore only "indirect" at best. Recently, several researchers proposed that electrophysiological.activity may interact with the nuclear spins in a measurable manner, such as causing phase and amplitude variations or changing the rate of decay in the NMR signal. Interactions between neuronal currents and spin populations in tissue may enable direct neuronal imaging (DNI) by MRI. Most studies to date have focussed on the feasibility of DNI at HF. Recently, our group (and a few others) has experimentally demonstrated ultra-low field (ULF) MRI, using fields 100,000- 1,000,000 times weaker than HF-MRI. While the NMR signals, known as the free induction decay (FID), at ULF are dramatically weaker than HF, we acquired high signal-to-noise measurements of FIDs at ULF using super- conducting .quantum interference device (SQUID) technology. We also recently presented the world's first simultaneous FID and MEG measurement of the human brain, using SQUID sensors. Our research will pursue demonstrating the feasibility of measuring a neuronal current effect on the NMR signature at ULF using two distinct approaches: 1) we will study interactions between neuronal currents and the proton spin population in tissue that induce dephasing of the spin population; and 2) we will study a novel mechanism based on the interaction of neuronal currents and the spin population that will cause a distinctly different relaxation of the spin population. The first approach is a direct extension of ideas presented for DNI at high fields, but can be greatly enhanced at ULF. Our second approach pursues an exciting possibility unique to ULF.
描述(由申请人提供):
我们建议证明在超低场(ULF)下使用核磁共振(NMR)技术直接对人脑中的神经元电流进行成像的可行性。我们假设神经元电流(细胞内和细胞外)将与组织中的质子自旋相互作用,导致 NMR 信号发生可测量的变化,可以使用现有的超低频磁共振成像 (MRI) 技术对其进行成像。该提案是对 RFA-EB-05-001:“神经活动成像新方法”的回应。 MRI 对感兴趣体积中的核(通常是质子)的 NMR 特征进行空间编码。当今的高场 (HF) MRI 机器采用 1.5 T 至 9 T 以上范围的静态磁场来产生精致的解剖特征。过去十年还见证了测量血流动力学反应的功能性 MRI (fMRI) 研究的爆炸式增长。然而,正如该 RFA 指出的那样,这种反应相对缓慢,并且仅与电生理过程间接相关。脑磁图(MEG)和脑电图(EEG)是对神经元电流产生的外部磁场和电场的直接测量。虽然这些模式产生详细的时间信息,但空间定位必须从高度特定的空间建模先验中推断出来。因此,脑磁图和脑电图的电生理“成像”充其量只是“间接”。最近,一些研究人员提出,电生理活动可能以可测量的方式与核自旋相互作用,例如引起相位和幅度变化或改变 NMR 信号的衰减率。神经元电流和组织中自旋群体之间的相互作用可以通过 MRI 实现直接神经元成像 (DNI)。迄今为止,大多数研究都集中在 DNI 在 HF 中的可行性。最近,我们的团队(以及其他一些团队)通过实验证明了超低场 (ULF) MRI,其使用的场强比 HF-MRI 弱 100,000-1,000,000 倍。虽然 ULF 下的 NMR 信号(称为自由感应衰变 (FID))明显弱于 HF,但我们使用超导量子干涉装置 (SQUID) 技术在 ULF 下获得了 FID 的高信噪比测量结果。我们最近还推出了世界上第一个使用 SQUID 传感器对人脑进行 FID 和 MEG 同步测量的技术。我们的研究将致力于证明使用两种不同方法测量神经元电流对 ULF NMR 特征的影响的可行性:1)我们将研究神经元电流与组织中质子自旋群体之间的相互作用,从而引起自旋群体的相移; 2)我们将研究一种基于神经元电流和自旋群体相互作用的新机制,该机制将导致自旋群体明显不同的松弛。第一种方法是在高场上为 DNI 提出的想法的直接扩展,但可以在 ULF 上得到极大的增强。我们的第二种方法追求 ULF 独有的令人兴奋的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Compton Mosher其他文献
John Compton Mosher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Compton Mosher', 18)}}的其他基金
Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
- 批准号:
10739544 - 财政年份:2023
- 资助金额:
$ 44.9万 - 项目类别:
Device-Independent Acquisition and Real Time Spatiotemporal Analysis of Clinical Electrophysiology Data
临床电生理学数据的独立于设备的采集和实时时空分析
- 批准号:
10225499 - 财政年份:2017
- 资助金额:
$ 44.9万 - 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
- 批准号:
7139534 - 财政年份:2006
- 资助金额:
$ 44.9万 - 项目类别:
相似国自然基金
m6A修饰Axin-1调控铁死亡在一氧化碳中毒迟发性脑病发生中的机制研究
- 批准号:82372211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脑功能网络探究rTMS通过调控神经元敏化在前庭性偏头痛中作用机制及治疗研究
- 批准号:82371483
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
- 批准号:82330087
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于H3K27M弥漫内生型脑桥胶质瘤(H3K27M-DIPG)转录调控网络的靶向治疗研究
- 批准号:82303130
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植入式感存算一体脑机接口片上系统研究
- 批准号:62371329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel SCN-OVLT portal system: Dissecting Anatomical and Functional Properties
新型 SCN-OVLT 门户系统:剖析解剖和功能特性
- 批准号:
10754088 - 财政年份:2023
- 资助金额:
$ 44.9万 - 项目类别:
Astrocyte regulation of amygdala circuit function
星形胶质细胞调节杏仁核回路功能
- 批准号:
10852065 - 财政年份:2023
- 资助金额:
$ 44.9万 - 项目类别:
Brain-gut-retina axis in diabetic retinopathy
糖尿病视网膜病变中的脑-肠-视网膜轴
- 批准号:
10595142 - 财政年份:2023
- 资助金额:
$ 44.9万 - 项目类别:
Hypothalamic BDNF-mTOR signaling promotes hypertension by increasing cardiovascular sensitivity to stress
下丘脑 BDNF-mTOR 信号通过增加心血管对压力的敏感性促进高血压
- 批准号:
10736248 - 财政年份:2023
- 资助金额:
$ 44.9万 - 项目类别:
Neural circuit control of fluid and solute clearance during sleep
睡眠期间液体和溶质清除的神经回路控制
- 批准号:
10673147 - 财政年份:2022
- 资助金额:
$ 44.9万 - 项目类别: