Identifying Risk Profiles for Substance Use and Comorbid Behavior
确定药物使用和共病行为的风险概况
基本信息
- 批准号:7502099
- 负责人:
- 金额:$ 6.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:Alcohol or Other Drugs useBasic ScienceBehaviorClassCommunitiesComplexComputer softwareDataData SetData SourcesDevelopmentDiseaseDistalEffectivenessEthnic groupFamilyFutureGenderGoalsIndividualInformation DisseminationInternetInterventionJournalsKnowledgeLinkLongitudinal StudiesMethodologyModelingNeighborhoodsOutcomePeer ReviewPrevalencePreventionPrevention ResearchPrincipal InvestigatorProblem behaviorPurposeRangeRegression AnalysisResearchResearch PersonnelRiskRisk AssessmentRisk FactorsSASScienceScientistSeriesSex CharacteristicsSiteSocietiesSolutionsStandards of Weights and MeasuresStatistical MethodsStructureSubgroupSubstance abuse problemTechniquesYouthbasecostinnovationintervention programknowledge basenovelnovel strategiesperson centeredprogramsprospectiveyoung adult
项目摘要
DESCRIPTION (provided by investigator): Substance use and comorbid health-related behaviors among youth and young adults have a high cost to society. Although considerable progress has been made in developing effective intervention programs for prevention, their effectiveness depends to a large extent on a clear understanding of multiple risks as they coexist. Prevention scientists everywhere have access to rich sources of data on early and concurrent risk factors for developmental outcomes. Many of these data sets have been previously analyzed with the objective of examining risk factors, and in fact much progress has been made in the identification of developmental models that describe how individual and multiple risks contribute to disorders such as substance abuse. However, it is now possible to move beyond the traditional approaches to modeling risk that have been used previously in order to examine the complex interplay among risk factors at multiple levels. Intervention scientists stand to gain a powerful new understanding of risk by moving from a traditional 'risk factors' approach to a novel 'risk profiles' approach. The proposed research employs a relatively new and underutilized person-centered statistical technique, latent class analysis with covariates, to (a) identify nuanced multilevel risk profiles in existing empirical data and (b) establish the ability of the risk profiles to predict future problem behavior. The data sets to be analyzed are from two community-based and two national longitudinal studies and contain rich data on a variety of risk factors as well as substance use and comorbid behaviors. Gender and ethnic group differences will be explored in the prevalence of risk profiles and the link between risk profile membership and later health-related outcomes. The proposed research will fill an important gap in current knowledge about the interplay of multiple risks at multiple levels, thereby helping intervention scientists to develop more effective programs and to target those programs more effectively. A series of articles will be submitted to peer-review journals, and a project Web site will be added to the Methodology Center Web site at Penn State, where free SAS software for latent class modeling currently is available for download. The project site will provide information for intervention scientists on how to use latent class analysis to uncover risk profiles in their own data. Substance use and comorbid health-related behaviors among youth and young adults have a high cost to society. Although considerable progress has been made in developing effective intervention programs for prevention, their effectiveness depends to a large extent on a clear understanding of multiple risks as they coexist. The proposed research will fill an important gap in current knowledge about the interplay of multiple risks at multiple levels, thereby helping intervention scientists to develop more effective programs and to target those programs more effectively.
描述(调查员提供):青年和年轻人的药物使用和与健康相关的行为对社会的成本很高。尽管在制定有效的预防干预计划方面取得了长足的进步,但它们的有效性在很大程度上取决于对多种风险的共存清晰了解。各地的预防科学家都可以获取有关早期和同时发生危险因素的丰富数据来源。以前已经对这些数据集进行了研究,以检查风险因素的目的,实际上在识别发展模型中已经取得了很大进展,这些发展模型描述了个体和多种风险如何促进诸如药物滥用之类的疾病。但是,现在可以超越传统的方法来建模风险,以检查多个级别的风险因素之间的复杂相互作用。干预科学家将通过从传统的“风险因素”方法转向新颖的“风险概况”方法来获得对风险的有力新理解。拟议的研究采用了一种相对较新的,以人为中心的统计技术,具有协变量的潜在类别分析,以(a)确定现有经验数据中的细微差别的多层次风险概况,(b)确定风险概况预测未来问题行为的能力。要分析的数据集来自两个基于社区的和两个国家纵向研究,并包含有关各种风险因素以及药物使用和合并行为的丰富数据。在风险概况的普遍性以及风险概况成员资格与后来与健康相关的结果之间的联系中,将探讨性别和种族差异。拟议的研究将填补有关当前有关多个级别多种风险相互作用的知识的重要空白,从而帮助干预科学家制定更有效的计划并更有效地针对这些计划。一系列文章将提交给PEER-REVIEW期刊,并将将项目网站添加到Penn State的方法论中心网站上,该网站当前可供下载潜在的类型建模的免费SAS软件。该项目站点将为干预科学家提供有关如何使用潜在类别分析来揭示其数据中风险概况的信息。青年和年轻人的药物使用和与健康相关的行为对社会的成本很高。尽管在制定有效的预防干预计划方面取得了长足的进步,但它们的有效性在很大程度上取决于对多种风险的共存清晰了解。拟议的研究将填补有关当前有关多个级别多种风险相互作用的知识的重要空白,从而帮助干预科学家制定更有效的计划并更有效地针对这些计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE T LANZA其他文献
STEPHANIE T LANZA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE T LANZA', 18)}}的其他基金
Promoting Rapid Uptake of Multilevel Latent Class Modeling via Best Practices: Investigating Heterogeneity in Daily Substance Use Patterns
通过最佳实践促进多级潜在类建模的快速采用:调查日常物质使用模式的异质性
- 批准号:
10739994 - 财政年份:2023
- 资助金额:
$ 6.22万 - 项目类别:
Age-Varying Effects in the Epidemiology of Drug Abuse
药物滥用流行病学中的年龄变化影响
- 批准号:
9276648 - 财政年份:2015
- 资助金额:
$ 6.22万 - 项目类别:
Age-Varying Effects in the Epidemiology of Drug Abuse
药物滥用流行病学中的年龄变化影响
- 批准号:
8940295 - 财政年份:2015
- 资助金额:
$ 6.22万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8537877 - 财政年份:2012
- 资助金额:
$ 6.22万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8708790 - 财政年份:2012
- 资助金额:
$ 6.22万 - 项目类别:
Advancing Tobacco Research by Integrating Systems Science and Mixture Models
通过整合系统科学和混合模型推进烟草研究
- 批准号:
8340121 - 财政年份:2012
- 资助金额:
$ 6.22万 - 项目类别:
Identifying Risk Profiles for Substance Use and Comorbid Behavior
确定药物使用和共病行为的风险概况
- 批准号:
7234649 - 财政年份:2007
- 资助金额:
$ 6.22万 - 项目类别:
Drug Abuse and HIV Prevention Research Methodology Conferences
药物滥用和艾滋病毒预防研究方法会议
- 批准号:
8432872 - 财政年份:2005
- 资助金额:
$ 6.22万 - 项目类别:
相似国自然基金
磁性功能微球在核酸快速提取及检测中的基础科学问题探究
- 批准号:52373131
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
企业基础科学研究的动因、机制与经济效果研究
- 批准号:72302229
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Well-Child Screening and Referral to Prevent Alcohol Use Before High School
健康儿童筛查和转介以防止高中前饮酒
- 批准号:
10081662 - 财政年份:2020
- 资助金额:
$ 6.22万 - 项目类别:
Neural and Behavioral Mechanisms of Avoidance Behavior and its Impact on Fear Extinction in Adults with PTSD
回避行为的神经和行为机制及其对 PTSD 成人恐惧消退的影响
- 批准号:
10065948 - 财政年份:2020
- 资助金额:
$ 6.22万 - 项目类别:
Prevention Research Center: Parenting Among Women Who Are Opioid Users
预防研究中心:阿片类药物使用者的女性育儿
- 批准号:
9793737 - 财政年份:2019
- 资助金额:
$ 6.22万 - 项目类别:
Guanfacine Target Engagement and Validation to Improve Substance Use Outcomes in Women
胍法辛目标参与和验证以改善女性药物使用结果
- 批准号:
9899239 - 财政年份:2019
- 资助金额:
$ 6.22万 - 项目类别:
Multi-method signature of risk for compulsive substance use: Human translation of the incentive-sensitization model
强迫性物质使用风险的多方法签名:激励敏化模型的人工翻译
- 批准号:
9525527 - 财政年份:2019
- 资助金额:
$ 6.22万 - 项目类别: