Eigenvarieties for compact reductive groups
紧约还原群的特征簇
基本信息
- 批准号:EP/F04304X/1
- 负责人:
- 金额:$ 27.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automorphic forms represent a vast generalisation of the classical notion of modular forms. They have applications to many areas of number theory, especially via the Langlands philosophy, according to which certain automorphic forms (those which are eigenvectors for the Hecke algebra, which are known as eigenforms) should parametrize representations of the Galois groups of global fields.In the case of classical modular forms, which are the automorphic forms for the group GL(2) of 2x2 invertible matrices, it is known that eigenforms move in p-adic families as the weight varies, and this p-adic variation is reflected by the existence of a geometric object known as the eigencurve , constructed by Coleman and Mazur. My research concerns the construction and properties of analogous objects (eigenvarieties) for more complicated algebraic groups. I have concentrated on the case where the real points of the group form a compact space; my thesis (to be submitted July 2007) gives a construction of eigenvarieties for a wide class of compact groups.One important problem in the theory of eigenvarieties is to give a good criterion for when a point on an eigenvariety actually arises from a classical modular form. It is known that such classical points are dense, and criteria are known which imply that a given point is classical, but they are not sharp (they fail to detect some classical points). Calculations of Snaith suggest that the full picture is related to Verma modules, which are constructions that appear in the theory of Lie algebras. The first major objective of my research is to develop this theory to give an exact characterisation of classical and non-classical points.The second aim of my research is to make these rather abstract objects practically computable. During my thesis I developed algorithms for calculating the classical automorphic forms, and it should be possible to extend these to calculate the non-classical forms which correspond to non-classical points on the eigenvariety. I intend to then use these programs to formulate precise conjectures regarding the arithmetic of these forms, which it might be possible to prove. In particular, these calculations would provide a practical test of the modulo p local Langlands correspondence; the correct formulation of this important conjecture is not known for groups more complex than GL(2), and any hypothesis would have directly testable consequences regarding the modulo p reduction of automorphic eigenforms, which my programs should allow me to calculate.Finally, in the case of compact groups my construction demonstrates the existence of an unexpected piece of extra structure: intermediate eigenvarieties of lower dimension indexed by parabolic subgroups, which correspond to allowing p-adic variation only in certain directions in the weight lattice. I hope to generalise this construction to non-compact groups. Indeed, the Langlands functoriality principle predicts that there should exist maps between these eigenvarieties in many cases; this might allow one to obtain more explicit information about eigenvarieties in the non-compact case (where the constructions available are much less concrete) by transferring it over from a compact group using one of these maps.
自同构形式代表了模块化形式的经典概念的广泛概括。它们在数论的许多领域都有应用,特别是通过朗兰兹哲学,根据朗兰兹哲学,某些自守形式(赫克代数的特征向量,称为特征形式)应该参数化全局域的伽罗瓦群的表示。对于经典模形式的情况,即 2x2 可逆矩阵的群 GL(2) 的自同构形式,已知特征形式移入p-adic 族随着权重的变化而变化,这种 p-adic 变化通过称为特征曲线的几何对象的存在来反映,该几何对象由 Coleman 和 Mazur 构建。我的研究涉及更复杂的代数群的类似对象(特征变量)的构造和性质。我集中讨论了群的实点形成一个紧空间的情况;我的论文(将于 2007 年 7 月提交)为一类广泛的紧群给出了特征向量的构造。特征向量理论中的一个重要问题是为特征向量上的点实际上从经典模形式中产生的时间给出一个很好的标准。众所周知,此类经典点是密集的,并且已知暗示给定点是经典点的标准,但它们并不尖锐(它们无法检测到某些经典点)。 Snaith 的计算表明,整个情况与 Verma 模相关,Verma 模是李代数理论中出现的结构。我研究的第一个主要目标是发展这一理论,以准确描述经典和非经典点。我研究的第二个目标是使这些相当抽象的对象实际上可计算。在我的论文期间,我开发了计算经典自同构形式的算法,并且应该可以扩展这些算法来计算与特征向量上的非经典点相对应的非经典形式。然后我打算使用这些程序来制定有关这些形式的算术的精确猜想,并且有可能证明这一点。特别是,这些计算将为模 p 局部朗兰兹对应提供实际测试;对于比 GL(2) 更复杂的群,这个重要猜想的正确表述尚不清楚,并且任何假设都会对自守本征型的模 p 约简产生直接可检验的结果,我的程序应该允许我计算它。最后,在在紧群的情况下,我的构造证明了意外的额外结构的存在:由抛物线子群索引的较低维度的中间特征变量,其对应于仅在权重格中的某些方向上允许p进数变化。我希望将这种构造推广到非紧群。事实上,朗兰兹函子原理预测在许多情况下这些特征变量之间应该存在映射;这可能允许人们通过使用这些映射之一从紧凑组转移来获得有关非紧凑情况下特征变量的更明确的信息(其中可用的构造不太具体)。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density of Classical Points in Eigenvarieties
特征簇中经典点的密度
- DOI:10.4310/mrl.2011.v18.n5.a15
- 发表时间:2011
- 期刊:
- 影响因子:1
- 作者:Loeffler D
- 通讯作者:Loeffler D
Coleman maps and the p -adic regulator
科尔曼图和 p-adic 调节器
- DOI:10.2140/ant.2011.5.1095
- 发表时间:2011
- 期刊:
- 影响因子:1.3
- 作者:Lei A
- 通讯作者:Lei A
Wach Modules and Iwasawa Theory for Modular Forms
Wach 模块和模块形式的 Iwasawa 理论
- DOI:10.4310/ajm.2010.v14.n4.a2
- 发表时间:2010
- 期刊:
- 影响因子:0.6
- 作者:Lei A
- 通讯作者:Lei A
Emerton's Jacquet functors for non-Borel parabolic subgroups
非 Borel 抛物线子群的 Emerton Jacquet 函子
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Hill, R
- 通讯作者:Hill, R
Overconvergent algebraic automorphic forms
超收敛代数自守形式
- DOI:10.1112/plms/pdq019
- 发表时间:2011
- 期刊:
- 影响因子:1.8
- 作者:Loeffler D
- 通讯作者:Loeffler D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Loeffler其他文献
Gross–Prasad periods for reducible representations
可简化表示的 Gross–Prasad 周期
- DOI:
10.1515/forum-2021-0089 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
David Loeffler - 通讯作者:
David Loeffler
Iwasawa theory and p-adic L-functions over Zp^2-extensions
Iwasawa 理论和 Zp^2-扩展上的 p-adic L-函数
- DOI:
10.1353/ajm.2010.a404143 - 发表时间:
2011 - 期刊:
- 影响因子:1.7
- 作者:
David Loeffler;Sarah Livia Zerbes - 通讯作者:
Sarah Livia Zerbes
Euler systems with local conditions
因地制宜的欧拉系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Loeffler;Sarah Livia Zerbes - 通讯作者:
Sarah Livia Zerbes
P-Adic Integration on Ray Class Groups and Non-ordinary p-Adic L-Functions
射线类群和非普通 p-Adic L 函数的 P-Adic 积分
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Loeffler - 通讯作者:
David Loeffler
On local zeta-integrals for ???(?) and ???(?) × ??(?)
???(?) 和 ???(?) × ??(?) 的局部 zeta 积分
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
David Loeffler - 通讯作者:
David Loeffler
David Loeffler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Loeffler', 18)}}的其他基金
The Birch--Swinnerton-Dyer conjecture: beyond dimension 1
Birch--Swinnerton-Dyer 猜想:超越 1 维
- 批准号:
EP/V046853/1 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
P-adic L-functions and explicit reciprocity laws
P 进 L 函数和显式互易定律
- 批准号:
EP/S020977/1 - 财政年份:2019
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Eigenvarieties for compact reductive groups
紧约还原群的特征簇
- 批准号:
EP/F04304X/2 - 财政年份:2010
- 资助金额:
$ 27.91万 - 项目类别:
Fellowship
相似国自然基金
基于非结构网格的高精度CESE格式
- 批准号:11901602
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
带有源项双曲守恒律系统的保平衡性质高精度杂交格式及其应用
- 批准号:11801383
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用
- 批准号:11871428
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
可压缩多介质流体力学的广义黎曼问题数值方法
- 批准号:11771054
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
非线性双曲方程的高阶HWENO方法的研究和应用
- 批准号:11601364
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
- 批准号:
EP/Y022157/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
- 批准号:
23K20871 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
- 批准号:
2426360 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant