Eigenvarieties for compact reductive groups
紧约还原群的特征簇
基本信息
- 批准号:EP/F04304X/1
- 负责人:
- 金额:$ 27.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automorphic forms represent a vast generalisation of the classical notion of modular forms. They have applications to many areas of number theory, especially via the Langlands philosophy, according to which certain automorphic forms (those which are eigenvectors for the Hecke algebra, which are known as eigenforms) should parametrize representations of the Galois groups of global fields.In the case of classical modular forms, which are the automorphic forms for the group GL(2) of 2x2 invertible matrices, it is known that eigenforms move in p-adic families as the weight varies, and this p-adic variation is reflected by the existence of a geometric object known as the eigencurve , constructed by Coleman and Mazur. My research concerns the construction and properties of analogous objects (eigenvarieties) for more complicated algebraic groups. I have concentrated on the case where the real points of the group form a compact space; my thesis (to be submitted July 2007) gives a construction of eigenvarieties for a wide class of compact groups.One important problem in the theory of eigenvarieties is to give a good criterion for when a point on an eigenvariety actually arises from a classical modular form. It is known that such classical points are dense, and criteria are known which imply that a given point is classical, but they are not sharp (they fail to detect some classical points). Calculations of Snaith suggest that the full picture is related to Verma modules, which are constructions that appear in the theory of Lie algebras. The first major objective of my research is to develop this theory to give an exact characterisation of classical and non-classical points.The second aim of my research is to make these rather abstract objects practically computable. During my thesis I developed algorithms for calculating the classical automorphic forms, and it should be possible to extend these to calculate the non-classical forms which correspond to non-classical points on the eigenvariety. I intend to then use these programs to formulate precise conjectures regarding the arithmetic of these forms, which it might be possible to prove. In particular, these calculations would provide a practical test of the modulo p local Langlands correspondence; the correct formulation of this important conjecture is not known for groups more complex than GL(2), and any hypothesis would have directly testable consequences regarding the modulo p reduction of automorphic eigenforms, which my programs should allow me to calculate.Finally, in the case of compact groups my construction demonstrates the existence of an unexpected piece of extra structure: intermediate eigenvarieties of lower dimension indexed by parabolic subgroups, which correspond to allowing p-adic variation only in certain directions in the weight lattice. I hope to generalise this construction to non-compact groups. Indeed, the Langlands functoriality principle predicts that there should exist maps between these eigenvarieties in many cases; this might allow one to obtain more explicit information about eigenvarieties in the non-compact case (where the constructions available are much less concrete) by transferring it over from a compact group using one of these maps.
自动形式代表了模块化形式的经典概念的广泛概括。它们在许多数量理论领域,尤其是通过兰兰兹的哲学上都有应用,根据这些理论,某些自动形式(那些是赫克(Hecke)代数的特征向量的形式(称为特征形式的特征向量)应参数化Galois galois galois galois glois群体的表示。特征形式随着重量的变化而在p-adic家族中移动,而这种p- adic变化反映出由科尔曼和马祖尔构建的称为特征库的几何对象的存在反映。我的研究涉及对更复杂的代数组的类似物体(特征值)的构建和特性。我专注于组的实际点形成紧凑空间的情况。我的论文(将于2007年7月提交)为广泛的紧凑型组提供了特征值的构造。特征值理论中的一个重要问题是给出一个良好的标准,以便何时在特征变量上的观点实际上是由经典模块化形式引起的。众所周知,这样的经典点是密集的,标准是已知的,这意味着给定的观点是经典的,但并不尖锐(它们无法检测到某些经典点)。 Snaith的计算表明,完整的图片与Verma模块有关,Verma模块是谎言代数理论中出现的结构。我的研究的第一个主要目标是开发这一理论,以确切地表征经典和非古典观点。我的研究的第二个目的是使这些相当抽象的对象实际上可以计算。在论文期间,我开发了用于计算经典自身形式的算法,应该可以扩展这些算法以计算与特征因子上非经典点相对应的非经典形式。然后,我打算使用这些程序来制定有关这些形式的算术的精确猜想,这可能是可以证明的。特别是,这些计算将提供对局部Langlands对应的实用测试。这一重要猜想的正确表述对于比GL(2)更复杂的群体不知道,任何假设都会在减少自多态特征形式的模量下有可直接测试的后果,而我的程序应该使我能够使我能够计算出来。对应于仅在重量晶格中的某些方向上允许P-ADIC变化。我希望将这种构建概括为非紧缩群体。确实,兰兰兹的功能性原则预测,在许多情况下,应该存在这些特征性之间的图。这可能允许人们使用其中一个地图将其从紧凑的组中转移到非紧凑型情况下(可用的构造的混凝土少得多),以获取有关特征值的更明确的信息。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Density of Classical Points in Eigenvarieties
特征簇中经典点的密度
- DOI:10.4310/mrl.2011.v18.n5.a15
- 发表时间:2011
- 期刊:
- 影响因子:1
- 作者:Loeffler D
- 通讯作者:Loeffler D
Coleman maps and the p -adic regulator
科尔曼图和 p-adic 调节器
- DOI:10.2140/ant.2011.5.1095
- 发表时间:2011
- 期刊:
- 影响因子:1.3
- 作者:Lei A
- 通讯作者:Lei A
Wach Modules and Iwasawa Theory for Modular Forms
Wach 模块和模块形式的 Iwasawa 理论
- DOI:10.4310/ajm.2010.v14.n4.a2
- 发表时间:2010
- 期刊:
- 影响因子:0.6
- 作者:Lei A
- 通讯作者:Lei A
Emerton's Jacquet functors for non-Borel parabolic subgroups
非 Borel 抛物线子群的 Emerton Jacquet 函子
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Hill, R
- 通讯作者:Hill, R
Overconvergent algebraic automorphic forms
超收敛代数自守形式
- DOI:10.1112/plms/pdq019
- 发表时间:2011
- 期刊:
- 影响因子:1.8
- 作者:Loeffler D
- 通讯作者:Loeffler D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Loeffler其他文献
Euler systems with local conditions
因地制宜的欧拉系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Loeffler;Sarah Livia Zerbes - 通讯作者:
Sarah Livia Zerbes
Iwasawa theory and p-adic L-functions over Zp^2-extensions
Iwasawa 理论和 Zp^2-扩展上的 p-adic L-函数
- DOI:
10.1353/ajm.2010.a404143 - 发表时间:
2011 - 期刊:
- 影响因子:1.7
- 作者:
David Loeffler;Sarah Livia Zerbes - 通讯作者:
Sarah Livia Zerbes
Gross–Prasad periods for reducible representations
可简化表示的 Gross–Prasad 周期
- DOI:
10.1515/forum-2021-0089 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
David Loeffler - 通讯作者:
David Loeffler
Explicit Calculations of Automorphic Forms for Definite Unitary Groups
- DOI:
10.1112/s1461157000000620 - 发表时间:
2008-01 - 期刊:
- 影响因子:0
- 作者:
David Loeffler - 通讯作者:
David Loeffler
P-adic L-functions in universal deformation families
通用变形族中的 P 进 L 函数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
David Loeffler - 通讯作者:
David Loeffler
David Loeffler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Loeffler', 18)}}的其他基金
The Birch--Swinnerton-Dyer conjecture: beyond dimension 1
Birch--Swinnerton-Dyer 猜想:超越 1 维
- 批准号:
EP/V046853/1 - 财政年份:2021
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
P-adic L-functions and explicit reciprocity laws
P 进 L 函数和显式互易定律
- 批准号:
EP/S020977/1 - 财政年份:2019
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Eigenvarieties for compact reductive groups
紧约还原群的特征簇
- 批准号:
EP/F04304X/2 - 财政年份:2010
- 资助金额:
$ 27.91万 - 项目类别:
Fellowship
相似国自然基金
基于非结构网格的高精度CESE格式
- 批准号:11901602
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
适应复杂场景冲击波传输的高效紧致高精度动理学方法研究
- 批准号:11971070
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用
- 批准号:11871428
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
带有源项双曲守恒律系统的保平衡性质高精度杂交格式及其应用
- 批准号:11801383
- 批准年份:2018
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
可压缩多介质流体力学的广义黎曼问题数值方法
- 批准号:11771054
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards compact and efficient nuclear reactors
迈向紧凑高效的核反应堆
- 批准号:
EP/Y022157/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Ultra-compact Sub-mm Heterodyne Focal Plane Array Frontends for Radio Astronomical Observation
用于射电天文观测的超紧凑亚毫米外差焦平面阵列前端
- 批准号:
23K20871 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Continuing Grant
Compact Optomechanical Seismic Sensors for LIGO
用于 LIGO 的紧凑型光机地震传感器
- 批准号:
2426360 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Standard Grant