Developing RNA Interference for Gene Specific Silencing in Aplysia Neurons
开发用于海兔神经元基因特异性沉默的 RNA 干扰
基本信息
- 批准号:7392756
- 负责人:
- 金额:$ 20.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAlzheimer&aposs DiseaseAnimalsAplysiaBathingBehaviorBehavioralBehavioral GeneticsBiologicalBiological AssayBiological ModelsCandidate Disease GeneCellsChemicalsChromosome PairingClinicalDNADatabasesDiseaseDouble-Stranded RNADrug AddictionElectroporationExploratory/Developmental GrantExpressed Sequence TagsFluorescenceFundingGangliaGene ExpressionGene SilencingGene TargetingGenesGenetic ScreeningGenomeGoalsGrantGreen Fluorescent ProteinsGuidelinesIn Situ HybridizationIndividualLeadLearningLettersMammalsMediatingMemoryMemory LossMental RetardationMental disordersMethodologyMethodsMicroinjectionsMolecularMotor NeuronsMyxoid cystNeurologicNeuronal PlasticityNeuronsNumbersPolymerase Chain ReactionPreparationProcessProtein OverexpressionRNARNA InterferenceResearch PersonnelRoleRole playing therapySensorySmall Interfering RNASpecificitySynapsesSynaptic TransmissionSynaptic plasticitySystemTechniquesTechnologyTestingTransfectionUnited States National Institutes of HealthWorkage relatedbaseexpression vectorgenetic analysisgenome sequencingimmunocytochemistryimprovedinnovationneuropsychiatrynovelresearch studysmall hairpin RNAsynaptogenesistherapeutic target
项目摘要
DESCRIPTION (provided by applicant): The goal of this R21 exploratory grant is to systematically develop the use of RNA interference (RNAi) in Aplysia neurons. Electrophysiological and behavioral studies in Aplysia have delineated the circuitry mediating simple forms of learning and memory in the animal. Cultured sensory-motor neurons from Aplysia have provided a model system for elucidating many of the molecular and cell biological mechanisms underlying learning-related synaptic plasticity. These mechanisms have been found to be generalizable to learning-related neuronal plasticity across species. While Aplysia offers many experimental advantages for cell biological and electrophysiological studies, it has not been suitable for genetic analyses. RNAi technology promises to transform Aplysia into a system in which genetic, behavioral, electrophysiological and cell biological analyses can be performed both in the animal and at the level of single cells and synapses. The experiments outlined in this proposal are aimed at developing methodologies for the use of RNAi in Aplysia. We will focus on investigating and optimizing 1) the type of RNA used for RNAi-long double stranded RNA (dsRNA) or small interfering RNAs (siRNAs)-- and 2) the method of delivery of the RNAi. To do this, we will target four endogenous Aplysia genes as well as exogenously overexpressed destabilized eGFP. We will determine whether the RNAi effectively silences target genes and whether or not this silencing is specific to the target gene. In addition, our experiments will identify the most efficient means of delivering RNA for RNAi and the best techniques for assaying the efficacy and specificity of RNAi-mediated gene silencing in Aplysia neurons. The results of the proposed experiments will be invaluable to researchers working in the Aplysia model system. From a broader perspective, the ability to use RNAi in Aplysia will generate valuable information about the molecular mechanisms underlying synapse formation, synaptic transmission and synaptic plasticity. This information likely will lead to the identification of potential therapeutic targets for the many neurological and psychiatric diseases in which these fundamental processes are perturbed. We propose to improve methods to study the molecular basis of learning and memory. The technologies we propose to develop will identify genes that are required for learning and in so doing will lead to potential therapies for the many diseases in which learning and memory are altered. Such diseases include mental retardation, age-related memory loss, Alzheimer's disease, drug addiction as well as many neuropsychiatric diseases.
描述(由申请人提供):R21 探索性资助的目标是系统地开发 RNA 干扰 (RNAi) 在海兔神经元中的应用。 海兔的电生理学和行为研究已经描绘了介导动物简单形式的学习和记忆的电路。 海兔培养的感觉运动神经元提供了一个模型系统,用于阐明与学习相关的突触可塑性背后的许多分子和细胞生物学机制。 人们发现这些机制可以推广到跨物种的学习相关神经元可塑性。 虽然海兔为细胞生物学和电生理学研究提供了许多实验优势,但它并不适合遗传分析。 RNAi技术有望将海兔转变为一个可以在动物以及单细胞和突触水平上进行遗传、行为、电生理和细胞生物学分析的系统。 本提案中概述的实验旨在开发在海兔中使用 RNAi 的方法。 我们将重点研究和优化 1) 用于 RNAi 的 RNA 类型——长双链 RNA (dsRNA) 或小干扰 RNA (siRNA),以及 2) RNAi 的递送方法。 为此,我们将针对四个内源海兔基因以及外源过度表达的不稳定 eGFP。 我们将确定 RNAi 是否有效地沉默靶基因,以及这种沉默是否特定于靶基因。 此外,我们的实验将确定用于 RNAi 的最有效的 RNA 传递方法,以及用于测定海兔神经元中 RNAi 介导的基因沉默的功效和特异性的最佳技术。 所提出的实验结果对于海兔模型系统的研究人员来说非常宝贵。 从更广泛的角度来看,在海兔中使用 RNAi 的能力将产生有关突触形成、突触传递和突触可塑性分子机制的有价值的信息。 这些信息可能会导致确定许多神经系统和精神疾病的潜在治疗靶点,这些疾病的基本过程受到干扰。 我们建议改进研究学习和记忆分子基础的方法。 我们提议开发的技术将识别学习所需的基因,从而为许多学习和记忆发生改变的疾病提供潜在的治疗方法。 此类疾病包括智力低下、与年龄相关的记忆丧失、阿尔茨海默病、毒瘾以及许多神经精神疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelsey C Martin其他文献
Kelsey C Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelsey C Martin', 18)}}的其他基金
Cytoplasmic Functions of Rbfox1, a Candidate Autism Gene
自闭症候选基因 Rbfox1 的细胞质功能
- 批准号:
8572004 - 财政年份:2013
- 资助金额:
$ 20.63万 - 项目类别:
Cytoplasmic Functions of Rbfox1, a Candidate Autism Gene
自闭症候选基因 Rbfox1 的细胞质功能
- 批准号:
8695492 - 财政年份:2013
- 资助金额:
$ 20.63万 - 项目类别:
Importin-mediated signaling from synapse to nucleus during neuronal plasticity
神经元可塑性过程中输入蛋白介导的从突触到细胞核的信号传导
- 批准号:
7617010 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Importin-mediated signaling from synapse to nucleus during neuronal plasticity
神经元可塑性过程中输入蛋白介导的从突触到细胞核的信号传导
- 批准号:
7802314 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Importin-mediated signaling from synapse to nucleus during neuronal plasticity
神经元可塑性过程中输入蛋白介导的从突触到细胞核的信号传导
- 批准号:
8066434 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Synapse to Nuclear Signaling During Long-Lasting Neuronal Plasticity
持久神经元可塑性期间突触到核信号传导
- 批准号:
8848886 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Developing RNA Interference for Gene Specific Silencing in Aplysia Neurons
开发用于海兔神经元基因特异性沉默的 RNA 干扰
- 批准号:
7256565 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Importin-mediated signaling from synapse to nucleus during neuronal plasticity
神经元可塑性过程中输入蛋白介导的从突触到细胞核的信号传导
- 批准号:
7317570 - 财政年份:2007
- 资助金额:
$ 20.63万 - 项目类别:
Synapse to Nuclear Signaling During Long-Lasting Neuronal Plasticity
持久神经元可塑性期间突触到核信号传导
- 批准号:
8697297 - 财政年份:2006
- 资助金额:
$ 20.63万 - 项目类别:
The Ubiquitin Proteasome Pathway & Synaptic Plasticity
泛素蛋白酶体途径
- 批准号:
6707163 - 财政年份:2003
- 资助金额:
$ 20.63万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Hippocampal adult-born neurons in social memory circuits
社会记忆回路中的海马成年神经元
- 批准号:
10716706 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Microbiome Contributions to Age-Associated Cognitive Decline
微生物组对年龄相关认知能力下降的影响
- 批准号:
10605551 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Molecular Dissection of the Axonal Injury Response for Regeneration and Neuroprotection
轴突损伤反应再生和神经保护的分子解剖
- 批准号:
10817383 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
TBI leads to degeneration of afferent neuronal projections
TBI 导致传入神经元投射退化
- 批准号:
10660379 - 财政年份:2023
- 资助金额:
$ 20.63万 - 项目类别:
Mechanism and function of retrograde mitochondrial transport in axons
轴突逆行线粒体转运的机制和功能
- 批准号:
10570955 - 财政年份:2022
- 资助金额:
$ 20.63万 - 项目类别: