Fast video coding: estimation-based control of video codec complexity
快速视频编码:基于估计的视频编解码器复杂度控制
基本信息
- 批准号:EP/E027024/1
- 负责人:
- 金额:$ 37.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We seek funding to address the problem of video compression on devices with limited processing resources. This is an issue for mobile platforms, where battery power and processing capabilities are limited, and for systems in which a video codec competes with other applications for processor resources. With the adoption of complex video coding standards (such as H.264/AVC) for consumer and mobile applications, the problem of computationally-efficient video coding is becoming increasingly important. It is vital to research and develop high quality video compression with controlled, low processor utilisation. This will make it possible to extend the battery life of mobile video devices (because a lower-power processor consumes less battery power) and to accommodate more software applications on a single processor.To date, the typical approach to the problem of limited processing resources is to reduce video frame rate and/or reduce compression quality in order to meet a computational constraint, leading to poor quality, jerky video images and unpredictable performance. This is unpleasant for the general consumer and unacceptable for specialist application such as remote surveillance and remote medical diagnosis. In contrast, our solution offers a way of managing video coding complexity, maintaining smooth video with good image quality.This proposal has two unique aspects. The first aspect is a novel method of reducing the complexity of video coding. The problem of evaluating and choosing coding modes is analysed and placed in a Bayesian framework. An adaptive algorithm maintains excellent video quality whilst offering a controllable reduction in computation, out-performing existing heuristic approaches. The second aspect is a system for controlling and managing coding complexity based on real-time measurements and targets. This enables a codec to maintain smooth, clear video images and to adapt to changes in scene content and available processing capability. We will develop and integrate these two concepts into a system that offers, for the first time, control of video codec complexity in an adaptive, analytic framework. The outcomes of this work will be of direct benefit to developers and integrators of next generation video-based platforms.The project will be led by Dr Iain Richardson, internationally recognised for his work on standards-based video coding. Dr Richardson and Dr Zhao (co-investigator) are experts in the field of video codec complexity management. Visiting researcher Professor Maja Bystrom of Boston University has already collaborated with the research team in developing the research tools that will form the basis of this project. BT Research (Multimedia Coding Analysis Group) will provide expert advice from an industry perspective.
我们寻求资金来解决具有有限处理资源的设备上的视频压缩问题。这是移动平台,电池电量和处理功能受到限制的问题,以及视频编解码器与其他应用程序竞争处理器资源的系统。随着用于消费者和移动应用程序的复杂视频编码标准(例如H.264/AVC),计算高效的视频编码问题变得越来越重要。通过受控的,低处理器的利用来研究和开发高质量的视频压缩至关重要。这将使可以延长移动视频设备的电池寿命(因为较低的处理器消耗了较小的电池电量)并在单个处理器上容纳更多的软件应用程序。到目前为止,解决有限处理资源问题的典型方法是降低视频帧速率和/或降低压缩质量,以达到计算限制,以达到差异质量,质量不佳,JERKY质量,JIRY质量,无预定的效果。对于一般消费者来说,这是不愉快的,对于远程监视和远程医学诊断等专业应用,这是不可接受的。相比之下,我们的解决方案提供了一种管理视频编码复杂性,以良好的图像质量保持流畅的视频的方法。该提案具有两个独特的方面。第一个方面是一种新颖的方法,可降低视频编码的复杂性。评估和选择编码模式的问题被分析并放置在贝叶斯框架中。一种自适应算法可保持出色的视频质量,同时提供可控的计算减少,超过现有的启发式方法。第二个方面是基于实时测量和目标控制和管理编码复杂性的系统。这使编解码器能够保持光滑,清晰的视频图像,并适应场景内容和可用处理能力的变化。我们将开发并将这两个概念整合到一个系统中,该系统首次提供了自适应,分析框架中视频编解码器复杂性的控制。这项工作的结果将对基于下一代视频的平台的开发人员和集成商有直接的好处。该项目将由Iain Richardson博士领导,Iain Richardson博士因其在基于标准的视频编码方面而受到国际认可。 Richardson博士和Zhao博士(共同投资者)是视频编解码复杂性管理领域的专家。波士顿大学的访问研究员Maja Bystrom教授已经与研究团队合作开发了将构成该项目基础的研究工具。 BT研究(多媒体编码分析小组)将从行业的角度提供专家建议。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yafan Zhao其他文献
Complexity reduction of H.264 using Lagrange optimization methods
使用拉格朗日优化方法降低 H.264 的复杂性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
C. S. Kannangara;I. Richardson;M. Bystrom;J. R. Solera;Yafan Zhao;A. MacLennan;R. Cooney - 通讯作者:
R. Cooney
Influence Of The Technical Parameters On Bioactive Films Deposited By Pulsed Laser
技术参数对脉冲激光沉积生物活性薄膜的影响
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Yafan Zhao;Chuanzhong Chen;Ming;Jian Liu - 通讯作者:
Jian Liu
Effects of the substrate temperature on the bioglass films deposited by pulsed laser
基板温度对脉冲激光沉积生物玻璃薄膜的影响
- DOI:
10.1016/j.apsusc.2008.04.092 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yafan Zhao;Ming;Chuanzhong Chen;Jian Liu - 通讯作者:
Jian Liu
Comparative analysis of zinc, copper, cadmium, and arsenic accumulation in forage-grain rice: Implications for food safety and health risks
- DOI:
10.1016/j.foodchem.2024.142436 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:
- 作者:
Yimei Wang;Shuai Huang;Weixu Huo;Xinghui Li;Xiaofei Shi;Kaige Gao;Yafan Zhao;Matthew Tom Harrison;Jing Zhang;Xiaoyan Song;Quanzhi Zhao;Ting Peng - 通讯作者:
Ting Peng
The Current Techniques For Preparing Bioglass Coatings
目前制备生物玻璃涂层的技术
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Yafan Zhao;Chuanzhong Chen;D. Wang - 通讯作者:
D. Wang
Yafan Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
可伸缩深度学习的视频极限压缩编码:理论与技术
- 批准号:62371288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于语义解耦和提示的高效监控视频编码与分析方法研究
- 批准号:62302246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
QoE驱动的360度全景视频编码算法优化研究
- 批准号:62371279
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度生成模型的沉浸式视频传输理论与方法
- 批准号:62302400
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A Study on Implementation Method of Highly Efficient Motion Compensation Prediction Scheme Using DNN in Video Coding
视频编码中DNN高效运动补偿预测方案的实现方法研究
- 批准号:
23K03843 - 财政年份:2023
- 资助金额:
$ 37.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeTS: Medium: Object-Centric, View-Adaptive and Progressive Coding and Streaming of Point Cloud Video
NeTS:Medium:以对象为中心、视图自适应和渐进式的点云视频编码和流式传输
- 批准号:
2312839 - 财政年份:2023
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant
Distributed video coding and deep learning using convolutional sparse dictionary generated with large scale datasets
使用大规模数据集生成的卷积稀疏字典进行分布式视频编码和深度学习
- 批准号:
23K11159 - 财政年份:2023
- 资助金额:
$ 37.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: Generative Adversarial Networks for Video Coding
ERI:用于视频编码的生成对抗网络
- 批准号:
2138635 - 财政年份:2022
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
Real-time video coding technology using the latest coding VVC/H.266 and its applications
采用最新编码VVC/H.266的实时视频编码技术及其应用
- 批准号:
22H03571 - 财政年份:2022
- 资助金额:
$ 37.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)