Fuzzy Geometry and the Quantum M-Theory Super-Fivebrane
模糊几何和量子M理论超五膜
基本信息
- 批准号:EP/C544951/1
- 负责人:
- 金额:$ 44.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 19th century the impressionist painters invented a new style of painting. Actually, there were two schools of impressionist painters, with very different philosophies. One school was the `pointillists'. If you look closely at a pointillist painting you'll see that it is constructed from individual dots of colour that are bit like 'atoms' of paint. The other school of impressionist painters--let's call them the 'ondulists'--painted in a very different way. From afar, an ondulist painting may look similar to a pointillist painting, but if you look closely you see just a vague wash of brushstrokes. No dots.Any ordinary material has a structure analogous to a pointillist painting. It may appear continuous, but will betray its atomic nature under sufficiently powerful magnification. Could there be extra-ordinary materials that are analogous to an ondulist painting? Well, there is a physical analogy of the ondulists' method: holography. A laser holograph is a piece of film through which laser light is shone to produce a 3D image. An equally remarkable property of a holograph is that any small part of it can be used to produce the entire image! If the negative of an ordinary photograph is cut in half, and one half discarded, then one has lost half the image. Not so with a laser holograph; the whole image is still there, but fuzzier.The word material suggests something substantial, but modern physics, based on the ideas of quantum mechanics and Einstein's theory of 'general relativity', views even the vacuum as a kind of material--let's call it spacetime . Quantum mechanics, which tells us how the atoms of ordinary materials behave, also tells us that spacetime should have a 'quantum' structure. Until recently, we were pointillists, imagining some kind of atomic structure, but now our best theories hint that Nature is an ondulist, and that holography is the appropriate metaphor. My aim is to elucidate the fuzzy nature of quantum spacetime, and work out its consequences for the physical world, via what is called 'M-theory'.In M-theory, the basic building blocks for matter are branes , which is a generic term derived from membranes for an extended object. M theory is not yet a true theory, but rather a collection of interlocking view points, in each of which one brane is dominant. From one such view point, M theory appears to be a theory of fivebranes . I aim to understand how this perspective may lead to a theory of quantum spacetime.
19世纪印象派画家发明了一种新的绘画风格。事实上,印象派画家有两个流派,有着截然不同的哲学。其中一所学校是“点画派”。如果您仔细观察点画派绘画,您会发现它是由单个颜色点构成的,有点像油漆的“原子”。印象派画家的另一流派——让我们称他们为“ondulists”——以一种非常不同的方式进行绘画。从远处看,一幅翁都主义绘画可能看起来与点画派绘画相似,但如果你仔细观察,你会发现只是模糊的笔触。没有点。任何普通材料都具有类似于点彩画的结构。它可能看起来是连续的,但在足够强大的放大倍数下会暴露其原子性质。是否存在类似于 ondulist 绘画的非凡材料?嗯,ondulists 的方法有一个物理类比:全息术。激光全息图是一张胶片,激光通过它照射可产生 3D 图像。全息图的一个同样显着的特性是它的任何一小部分都可以用来生成整个图像!如果将一张普通照片的底片切成两半,然后丢弃一半,那么就失去了一半的图像。激光全息图则不然。整个图像仍然存在,但更加模糊。材料这个词暗示着某种实质性的东西,但现代物理学基于量子力学和爱因斯坦的“广义相对论”理论,甚至将真空视为一种材料——让我们称之为它时空。量子力学告诉我们普通材料的原子如何表现,也告诉我们时空应该具有“量子”结构。直到最近,我们还是点画主义者,想象着某种原子结构,但现在我们最好的理论暗示,大自然是一个ondulist,而全息术是合适的隐喻。我的目标是通过所谓的“M 理论”阐明量子时空的模糊本质,并计算出其对物理世界的影响。在 M 理论中,物质的基本构建块是膜,它是一种通用的源自膜的术语,表示扩展物体。 M理论还不是一个真正的理论,而是一系列相互关联的观点的集合,其中每个观点都有一个膜占主导地位。从这样的观点来看,M 理论似乎是一种五膜理论。我的目的是了解这种观点如何导致量子时空理论。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cosmology, Quantum Vacuum and Zeta Functions - In Honor of Emilio Elizalde
宇宙学、量子真空和 Zeta 函数 - 纪念 Emilio Elizalde
- DOI:http://dx.10.1007/978-3-642-19760-4_27
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Bergshoeff E
- 通讯作者:Bergshoeff E
On maximal massive 3D supergravity
关于最大质量 3D 超重力
- DOI:10.1088/0264-9381/27/23/235012
- 发表时间:2010-07-23
- 期刊:
- 影响因子:3.5
- 作者:E. Bergshoeff;O. Hohm;J. Rosseel;P. Townsend
- 通讯作者:P. Townsend
Semionic supersymmetric solitons
半子超对称孤子
- DOI:http://dx.10.1088/1751-8113/43/46/465401
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Mezincescu L
- 通讯作者:Mezincescu L
Light-cone M5 and multiple M2-branes
光锥 M5 和多个 M2 膜
- DOI:10.1088/0264-9381/25/24/245003
- 发表时间:2008-06-29
- 期刊:
- 影响因子:3.5
- 作者:I. B;os;os;P. Townsend
- 通讯作者:P. Townsend
Self-gravitating Yang monopoles in all dimensions
所有维度的自引力杨单极子
- DOI:http://dx.10.1088/0264-9381/23/15/007
- 发表时间:2006
- 期刊:
- 影响因子:3.5
- 作者:Gibbons G
- 通讯作者:Gibbons G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Townsend其他文献
Superiority of the Deep Circumflex Iliac Vessels as the Supply for Free Groin Flaps Clinical Work
深回旋髂血管作为游离腹股沟皮瓣临床工作供应的优越性
- DOI:
- 发表时间:
1979 - 期刊:
- 影响因子:3.6
- 作者:
Ian G. Taylor;Paul Townsend;R. Corlett - 通讯作者:
R. Corlett
Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity
SARS-CoV-2 Omicron 改变 TMPRSS2 的使用会影响传染性和融合性
- DOI:
10.1038/s41586-022-04474-x - 发表时间:
2022-02-01 - 期刊:
- 影响因子:64.8
- 作者:
B. Meng;A. Abdullahi;I. Ferreira;Niluka Goonawardane;Akatsuki Saito;I. Kimura;Daichi Yamasoba;P. P. Gerber;S. Fatihi;Surabhi Rathore;Samantha K. Zepeda;G. Papa;S. Kemp;Terumasa Ikeda;Mako Toyoda;Toong Seng Tan;Jin Kuramochi;S. Mitsunaga;T. Ueno;Kotaro Shirakawa;A. Takaori;T. Brevini;D. Mallery;O. Charles;Stephen Gordon Christoph Nathalie Paul J. Paul A. Nicholas Baker Dougan Hess Kingston Lehner Lyons Matheson O;S. Baker;G. Dougan;C. Hess;N. Kingston;P. Lehner;P. Lyons;Nicholas J Matheson;W. Ouweh;C. Saunders;C. Summers;James E. D. Thaventhiran;M. Toshner;M. Weekes;P. Maxwell;A. Shaw;Ashlea Bucke;J. Calder;L. Canna;Jason Domingo;A. Elmer;S. Fuller;Julie Harris;S. Hewitt;J. Kennet;Sherly Jose;Jenny Kourampa;A. Meadows;Criona O’Brien;Jane Price;Cherry Publico;Rebecca J Rastall;C. Ribeiro;J. Rowl;s;s;Valentina Ruffolo;Hugo Tordesillas;B. Bullman;B. Dunmore;S. Gräf;J. Hodgson;Christopher Huang;K. Hunter;E. Jones;E. Legchenko;Cecilia Matara;Jennifer M. Martin;F. Mescia;Ciara O’Donnell;L. Pointon;J. Shih;R. Sutcliffe;T. Tilly;C. Treacy;Z. Tong;Jennifer Wood;Marta Wylot;Ariana Betancourt;G. Bower;C. Cossetti;Aloka De Sa;M. Epping;Stuart Fawke;Nicholas S. Gleadall;R. Grenfell;Andrew Hinch;Sarah Jackson;Isobel Jarvis;Ben Krishna;Francesca L. Nice;Ommar Omarjee;Marianne R Perera;Martin Potts;N. Richoz;V. Romashova;Luca Stefanucci;Mateusz Strezlecki;L. Turner;E. D. De Bie;K. Bunclark;Masa Josipovic;Michael Mackay;H. Butcher;D. Caputo;Matt Ch;ler;ler;P. Chinnery;Debbie Clapham;Eleanor F. Dewhurst;C. Fern;ez;ez;A. Furlong;B. Graves;J. Gray;Sabine Hein;Tasmin Ivers;Emma Le Gresley;R. Linger;Mary A. Kasanicki;Rebecca King;Sara E. Meloy;A. Moulton;Frances E. Muldoon;Nigel R. Ovington;S. Papadia;C. Penkett;Isabel Phelan;Venkatesh;R. Paraschiv;Abigail H. Sage;J. Sambrook;Ingrid Scholtes;K. Schon;H. Stark;K. Stirrups;Paul Townsend;Neil E. Walker;J. Webster;Erika P. Yuri L. Jumpei Keiya Yusuke Mai Akiko Miyabisha Butlertanaka Tanaka Ito Uriu Kosugi Suganami Oide ;Erika P. Butlertanaka;Yurie Tanaka;Jumpei Ito;K. Uriu;Y. Kosugi;Mai Suganami;Akiko Oide;Miyabishara Yokoyama;Mika Chiba;Chihiro Motozono;H. Nasser;Ryo Shimizu;K. Kitazato;Haruyo Hasebe;T. Irie;So Nakagawa;Jiaqi Wu;Miyoko Takahashi;T. Fukuhara;K. Shimizu;Kana Tsushima;Haruko Kubo;Yasuhiro Kazuma;Ryosuke Nomura;Yoshihito Horisawa;Kayoko Nagata;Yugo Kawai;Yohei Yanagida;Y. Tashiro;K. Tokunaga;S. Ozono;Ryoko Kawabata;Nanami Morizako;K. Sadamasu;Hiroyuki Asakura;M. Nagashima;K. Yoshimura;Paúl Erika Veronica Sully Belén Mónica Mateo Gabriel Pa Cárdenas Muñoz Barragan Márquez Prado;P. Cárdenas;E. Muñoz;V. Barragán;S. Márquez;B. Prado;M. Becerra;Mateo Caravajal;G. Trueba;P. Rojas;M. Grunauer;B. Gutiérrez;J. J. Guadalupe;J. Fernández;D. Andrade;M. Baldeón;Andrea Pinos;John E. Bowen;Anshu Joshi;A. Walls;Laurelle Jackson;Darren P. Martin;Kenneth G. C. Smith;J. Bradley;J. Briggs;Jinwook Choi;E. Madissoon;K. Meyer;P. Mlcochova;L. Ceron;R. Doffinger;S. Teichmann;A. Fisher;M. Pizzuto;A. De Marco;D. Corti;M. Hosmillo;J. Lee;L. James;Lipi Thukral;D. Veesler;A. Sigal;F. Sampaziotis;I. Goodfellow;Kei Sato;Ravindra K. Gupta - 通讯作者:
Ravindra K. Gupta
Paul Townsend的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Townsend', 18)}}的其他基金
MRC IAA 2021 University of Surrey
MRC IAA 2021 萨里大学
- 批准号:
MR/X502698/1 - 财政年份:2022
- 资助金额:
$ 44.46万 - 项目类别:
Research Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 44.46万 - 项目类别:
Continuing Grant
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
- 批准号:
10723802 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 44.46万 - 项目类别: