Retinal circuits for precise coding
用于精确编码的视网膜电路
基本信息
- 批准号:7350117
- 负责人:
- 金额:$ 38.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-30 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:Amacrine CellsBenchmarkingBrainCellsClinicalCodeComplexComputer SimulationConditionCouplingData SetDendritesDetectionElectrodesElementsEnvironmentEventEyeEye diseasesFrequenciesGap JunctionsGray unit of radiation doseKnowledgeLifeMeasuresMethodsModelingMorphologyMotionNeuronsNight BlindnessNoiseNumbersPathway interactionsPerformancePotassium ChannelProcessPropertyRangeResearch PersonnelRetinaRetinalRetinal ConeRetinal DystrophySignal TransductionStandards of Weights and MeasuresStimulusSumSynapsesTestingTimeTreesVesicleVisualVisual PathwaysWorkcomputer programcomputerized data processingdetectorganglion cellimprovedneural circuitpaired stimulipostsynapticpresynapticreceptive fieldrelating to nervous systemresponseretinal rodstheoriestransmission processvisual codingvisual performancevoltagevoltage gated channel
项目摘要
We propose to study the precision of coding in the retina where correlated visual signals are processed
before being passed to ganglion cells for transmission to the brain. Performance of retinal circuits is limited
by noise because the visual signal has a large (10 log unit) dynamic range but is carried by discrete
stochastic events such as vesicle release, channel opening, and spikes. Therefore the retina takes
advantage of correlated features of the visual environment such as extended objects, velocity, or direction of
motion to code these features with specific circuits, improving their signal/noise ratio. But exactly how retinal
circuits accomplish this is unknown. One standard theory is that noise from synaptic release and voltage-
gated channels is removed by integrating over an extended time. However, the presence of nonlinearities in
retinal circuitry suggests that encoding is more complex. For example, the All amacrine cells and bipolar
cells contain voltage-gated channels that may amplify and provide adaptation, and they also contain gap
junctions that detect correlated signals and remove noise. The dendrites of many ganglion cells are active
and may boost postsynaptic potentials nonlinearly to generate a reliable signal. We hypothesize that these
neural elements are poised to specifically amplify fast spatially-correlated signals, creating a coincidence
detector that imparts salience to visual signals. We propose to test this hypothesis by applying an ideal
observer to the responses of real and model neurons. The ideal observer is a computer program that
discriminates using the likelihood rule between the responses to a pair of stimuli to measure the precision
with which a neuron signals e.g. motion or contrast. This analysis provides the number of gray levels, a
fundamental measure of information capacity. We will record from live bipolar, amacrine, and ganglion cells,
construct realistic computer models of these neurons and their circuits, and measure the precision of real
neurons and model with the ideal observer. Tracking the precision of transient, sustained, and directional
selective visual signals from one layer to the next, we will discover where in the visual pathway information
is lost and preserved, and gain a better understanding of how information is coded. This work will help to
understand how the eye functions, and this knowledge will help clinical researchers determine what has
gone wrong in many types of eye disease such as night blindness and other retinal dystrophies.
我们建议研究处理相关视觉信号的视网膜中编码的精度
在传递到神经节细胞之前,将其传播到大脑。视网膜电路的性能有限
通过噪声,因为视觉信号具有较大(10 log单元)的动态范围,但由离散携带
随机事件,例如囊泡释放,通道开口和尖峰。因此,视网膜需要
视觉环境的相关特征的优势,例如扩展对象,速度或方向
用特定电路对这些特征进行编码的运动,从而提高其信号/噪声比。但是确切的视网膜
电路实现这一目标是未知的。一种标准理论是突触释放和电压的噪声 -
通过在延长的时间内集成来删除封闭通道。但是,存在非线性
视网膜电路表明编码更为复杂。例如,所有的无聚细胞和双极细胞
单元包含可能扩大和提供适应的电压门控通道,并且还包含间隙
检测相关信号并消除噪声的连接。许多神经节细胞的树突是活跃的
并可能非线性地增强突触后电位以产生可靠的信号。我们假设这些
神经元素有望特别放大快速的空间相关信号,从而创造出巧合
赋予视觉信号的探测器。我们建议通过应用理想来检验这一假设
观察者对真实和模型神经元的反应。理想的观察者是计算机程序
使用对一对刺激的响应之间的可能性规则进行区分以测量精度
神经元信号,例如运动或对比。该分析提供了灰度的数量,
信息能力的基本衡量。我们将记录来自活躁郁症,悬脂和神经节细胞的记录,
构建这些神经元及其电路的现实计算机模型,并测量真实的精度
具有理想观察者的神经元和模型。跟踪瞬态,持续和定向的精度
从一层到另一层的选择性视觉信号,我们将在视觉途径信息中发现位置
丢失和保存,并更好地了解信息的编码方式。这项工作将有助于
了解眼睛的功能以及这些知识如何帮助临床研究人员确定什么
在许多类型的眼病中出错,例如夜失明和其他视网膜营养不良。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert G Smith其他文献
Concomitant Use of Spasmolytics and Opioids for Postoperative Pain After Foot and Ankle Surgery: Fair or Foul?
足踝手术后同时使用解痉药和阿片类药物治疗术后疼痛:好还是坏?
- DOI:
10.7547/21-247 - 发表时间:
2023 - 期刊:
- 影响因子:0.7
- 作者:
Brandon M Brooks;Robert G Smith - 通讯作者:
Robert G Smith
Risk Management and Mitigating Risk Opportunities for Opioid Prescribing.
阿片类药物处方的风险管理和降低风险机会。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Robert G Smith - 通讯作者:
Robert G Smith
Robert G Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert G Smith', 18)}}的其他基金
Retinal Circuitry for Robust Direction Selectivity
视网膜电路具有强大的方向选择性
- 批准号:
8219235 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Retinal Circuitry for Robust Direction Selectivity
视网膜电路具有强大的方向选择性
- 批准号:
8585072 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Retinal Circuitry for Robust Direction Selectivity
视网膜电路具有强大的方向选择性
- 批准号:
8383102 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Probing light responses of ON bipolar and AII amacrine cells with calcium imaging
用钙成像探测 ON 双极和 AII 无长突细胞的光反应
- 批准号:
8030207 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Probing light responses of ON bipolar and AII amacrine cells with calcium imaging
用钙成像探测 ON 双极和 AII 无长突细胞的光反应
- 批准号:
8209149 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
Retinal Circuitry for Robust Direction Selectivity
视网膜电路具有强大的方向选择性
- 批准号:
8775226 - 财政年份:2011
- 资助金额:
$ 38.34万 - 项目类别:
相似国自然基金
类脑计算系统基准测试研究
- 批准号:
- 批准年份:2022
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
类脑计算系统基准测试研究
- 批准号:62250006
- 批准年份:2022
- 资助金额:190.00 万元
- 项目类别:国际(地区)合作与交流项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:62202441
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于工作负载表征的类脑体系结构基准测试模型与自动映射方法研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
SYNAPTIC ORGANIZATION AND VISUAL PROCESSING IN INTERNEURON CIRCUITS OF THE RETINA
视网膜中间神经元回路中的突触组织和视觉处理
- 批准号:
9337454 - 财政年份:2016
- 资助金额:
$ 38.34万 - 项目类别:
Synaptic Organization and Function of Retinal Interneurons and Downstream Visual Pathways
视网膜中间神经元和下游视觉通路的突触组织和功能
- 批准号:
10388238 - 财政年份:2016
- 资助金额:
$ 38.34万 - 项目类别:
Synaptic Organization and Function of Retinal Interneurons and Downstream Visual Pathways
视网膜中间神经元和下游视觉通路的突触组织和功能
- 批准号:
10595556 - 财政年份:2016
- 资助金额:
$ 38.34万 - 项目类别: