Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
基本信息
- 批准号:7441162
- 负责人:
- 金额:$ 39.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesAnimalsArabidopsisBacteriaBiological AssayBiological ProcessBiologyCell membraneCell physiologyCellsCharacteristicsChemistryClassificationCollaborationsComplexCouplingDevelopmentElectrophysiology (science)EnvironmentEquilibriumEscherichia coliFamilyForce of GravityGrowth and Development functionHealthHomologous GeneIon ChannelLaboratoriesLeadLipid BilayersLiquid substanceMeasurementMeasuresMechanicsMembraneMembrane ProteinsMolecularMolecular ConformationMorphologyMutagenesisOrganellesOrganismOsmotic PressureOsmotic ShocksPerceptionPhysicsPhysiologicalPlantsPropertyProteinsPublic HealthReporterResearchRoleSeriesStretchingStructureSurveysTheoretical modelThickTouch sensationVesicleWaterWidthWorkcell growthimprovedinterestprotein structureresearch studyresponse
项目摘要
DESCRIPTION (provided by applicant): All organisms, from single-celled bacteria to multi-cellular animals and plants, must sense and respond to mechanical force in their external environment (shear force, gravity, touch) and in their internal environment (osmotic pressure, membrane deformation) for proper growth, development, and health. Our research focuses on two families of mechanosensitive channels, the prokaryotic channels MscL and MscS and their eukaryotic homologs in Arabidopsis. MscL and MscS are intrinsically stretch-activated channels that open and close in response to tension applied directly to the bilayer and consequently are sensitive reporters of protein- membrane energetics. Elucidating how these mechanosensitive channels function in the context of the membrane will help us understand how mechanical force can generate biophysical alterations that in turn lead to adaptive changes in cell physiology. Aim 1: Investigate the crystal structures of MscL and MscS in multiple conformational states. MscL and MscS are among the few gated channels that have been crystallographically determined. Our highest priority is to improve the structures of the E. coli channels, but we will also systematically survey prokaryotic homologs and the use of molecular doorstops to trap channels in alternate conformational states to define the gating transition in structural detail. Aim 2: Analyze the biophysical interactions between mechanosensitive channels and the lipid bilayer. Working within the context of a theoretical model, the coupling between gating tension, bilayer thickness, and width of the hydrophobic region of MscL will be explored through mutagenesis and single channel electrophysiology. These studies will dissect the energetic contributions of different membrane deformation terms to the conformational equilibrium between channel states. The physiologically crucial permeation of water through MscL and MscS in giant unilamellar vesicles will be measured volumetrically and compared to the fluid transport properties anticipated from conductance measurements. Aim 3: Characterize functional and structural aspects of eukaryotic MscS-Like channels. The MscS-Like (MSL) channels of Arabidopsis provide an opportunity to investigate the structure and function of mechanosensitive channels in the context of multi-cellular eukaryotic organisms. The oligomeric state, channel characteristics, and structure of these proteins will be investigated. We will also use a series of new and established assays to characterize their biological function in osmotic shock protection, intramembrane localization, electrophysiology and organelle morphology control. Our proposed experiments on the MSLs, together with the experiments proposed above for MscL and MscS, are the start towards a systematic approach to revealing how MS channels function in the context of the membrane and the cell. PUBLIC HEALTH RELEVANCE Force-sensing is a critical aspect of healthy cell growth, morphology and development. We will study in molecular detail how force-sensing is achieved by two families of stretch-activated membrane channels.
描述(由申请人提供):所有生物体,从单细胞细菌到多细胞动物和植物,都必须感知并响应其外部环境(剪切力、重力、触摸)和内部环境(渗透压)中的机械力、膜变形)以保证正常生长、发育和健康。我们的研究重点是拟南芥中两个机械敏感通道家族:原核通道 MscL 和 MScS 及其真核同源物。 MscL 和 MScS 本质上是拉伸激活通道,可响应直接施加到双层的张力而打开和关闭,因此是蛋白质膜能量学的敏感报告者。阐明这些机械敏感通道如何在膜的背景下发挥作用将有助于我们理解机械力如何产生生物物理改变,进而导致细胞生理学的适应性变化。目标 1:研究 MscL 和 MScS 在多种构象状态下的晶体结构。 MscL 和 MScS 是少数已通过晶体学测定的门控通道。我们的首要任务是改善大肠杆菌通道的结构,但我们还将系统地研究原核同源物,并使用分子门挡将通道捕获在交替构象状态下,以定义结构细节的门控转变。目标 2:分析机械敏感通道和脂质双层之间的生物物理相互作用。在理论模型的背景下,将通过诱变和单通道电生理学来探索门控张力、双层厚度和 MscL 疏水区域宽度之间的耦合。这些研究将剖析不同膜变形项对通道状态之间构象平衡的能量贡献。将通过体积测量水通过巨型单层囊泡中的 MscL 和 MScS 的生理关键渗透,并与电导测量预期的流体传输特性进行比较。目标 3:表征真核 MscS 样通道的功能和结构。拟南芥的 MScS 样 (MSL) 通道为研究多细胞真核生物中机械敏感通道的结构和功能提供了机会。将研究这些蛋白质的寡聚状态、通道特征和结构。我们还将使用一系列新的和已建立的测定法来表征它们在渗透压休克保护、膜内定位、电生理学和细胞器形态控制方面的生物学功能。我们提出的 MSL 实验,以及上面提出的 MscL 和 MScS 实验,是揭示 MS 通道在膜和细胞背景下如何发挥作用的系统方法的开始。公共健康相关性力感应是健康细胞生长、形态和发育的一个关键方面。我们将在分子细节上研究两个拉伸激活膜通道家族如何实现力传感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS CHARLES REES其他文献
DOUGLAS CHARLES REES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS CHARLES REES', 18)}}的其他基金
CALIFORNIA INSTITUTE OF TECHNOLOGY STRUCTURAL BIOLOGY SCIENCE
加州理工学院结构生物科学
- 批准号:
8362337 - 财政年份:2011
- 资助金额:
$ 39.09万 - 项目类别:
CALIFORNIA INSTITUTE OF TECHNOLOGY STRUCTURAL BIOLOGY SCIENCE
加州理工学院结构生物科学
- 批准号:
8170342 - 财政年份:2010
- 资助金额:
$ 39.09万 - 项目类别:
TransportPDB: Center for the X-ray Structure Determination of Human Transporters
TransportPDB:人类转运蛋白 X 射线结构测定中心
- 批准号:
8152828 - 财政年份:2010
- 资助金额:
$ 39.09万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
7918610 - 财政年份:2009
- 资助金额:
$ 39.09万 - 项目类别:
相似海外基金
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 39.09万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 39.09万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 39.09万 - 项目类别:
Implications of Prefrontal Cortex Development for Adolescent Reward Seeking Behavior
前额皮质发育对青少年奖励寻求行为的影响
- 批准号:
10739548 - 财政年份:2023
- 资助金额:
$ 39.09万 - 项目类别:
Physiology of Lifespan Extension and Metabolic Hormesis with Riboflavin Depletion
核黄素消耗延长寿命和代谢兴奋作用的生理学
- 批准号:
10663638 - 财政年份:2023
- 资助金额:
$ 39.09万 - 项目类别: