Modeling Dynamics of Salivery Gland Branching Morphogenesis

唾液腺分支形态发生的动力学建模

基本信息

  • 批准号:
    7529980
  • 负责人:
  • 金额:
    $ 31.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application is a collaborative project between an experimental biologist and a theoretical mathematician in order to develop a simulation framework to model the early stages of salivary gland branching morphogenesis and create an interactive tool that can be used to predict cell behavior within this context. Existing strategies for engineering salivary glands have been unable to create a complex branched structure or successfully produce saliva-secreting acinar cells, which may relate to the lack of appropriate 3D structure in these models. Although there is currently a clinical need for artificial salivary glands to replace the damaged saliva-producing tissue in patients suffering from Sj"gren's Syndrome or from side effects of radiation therapy for head and neck tumors, few predictive tools are available to model cell behavior. To engineer branched tissues, we need to understand how the branching occurs during development and how signaling pathways translate into physical changes. While many signaling pathways and structural components have been identified that play a role in branching, they so far have not been incorporated into a comprehensive integrated model that explains branching morphogenesis. This highly dynamic structural process can hardly be understood using conventional molecular biology methods alone. Only a close association between experiments and mathematical modeling will allow an integrated, systems level understanding of the process of branching morphogenesis. We previously generated a simulation framework to model lung branching based on localized proliferation. This model is limited since basement membrane dynamics are critical for branching. Our hypothesis is that basement membrane dynamics controlled by Rho kinase (ROCK)-mediated signaling is a critical component of salivary gland branching morphogenesis. To address this hypothesis and to create a framework for understanding the role of basement membrane dynamics during branching morphogenesis, we propose five specific aims: Specific Aim 1 Develop a simulation framework for salivary gland branching morphogenesis based on Level Set Methods, Specific Aim 2 Develop the experimental model system and compare experimental results with predictions of the new mathematical model and simulation framework, Specific Aim 3 Investigate the function of cytoskeletal inhibitors on branching morphogenesis and use this data to train the model, Specific Aim 4 Determine if ROCK inhibitors affect cytoskeletal tension during branching morphogenesis, and Specific Aim 5 Identify the cellular mechanism by which ROCK affects branching morphogenesis. The robust simulation framework and the mathematical models developed as a result of this project will constitute the first crucial step towards development of a comprehensive model of salivary gland branching morphogenesis. Significantly, it will guide experimentalists by revealing missing links and suggesting directions for future research. Further, the mathematical model and simulation framework can be modified as more data is obtained and will provide us with a tool to predict, and eventually, control cell behavior on different matrix substrates for intelligent engineering of a functional salivary gland. Project Narrative: The data obtained from this grant will advance basic scientific knowledge regarding the role of the basement membrane in control of branching morphogenesis in the salivary gland. In addition, we will create a mathematical model that incorporates experimental analysis of both biochemical and physical control. The model will be implemented in an appropriate numerical framework. This software tool will be accessible by a front end user-friendly interface, such that it will be available for other experimental biologists to use as a research tool for testing hypothesis in silico before experimenting with live tissue. Finally, in generating this model that allows us to describe and predict cell behavior within this context, we will gain insights into new methods for controlling cells for engineering of tissues which require prediction of cell behavior. This work will lead to generation of new models for tissue engineering.
描述(由申请人提供):该应用程序是实验生物学家和理论数学家之间的合作项目,旨在开发一个模拟框架来模拟唾液腺分支形态发生的早期阶段,并创建一个可用于预测细胞的交互式工具在此背景下的行为。现有的唾液腺工程策略无法创建复杂的分支结构或成功产生分泌唾液的腺泡细胞,这可能与这些模型中缺乏适当的 3D 结构有关。尽管目前临床需要人工唾液腺来替代患有干燥综合征或头颈部肿瘤放射治疗副作用的患者受损的唾液产生组织,但很少有预测工具可用于模拟细胞行为。为了设计分支组织,我们需要了解分支在发育过程中如何发生以及信号通路如何转化为物理变化。综合的解释分支形态发生的集成模型。仅使用传统的分子生物学方法很难理解这种高度动态的结构过程,只有实验和数学建模之间的密切联系才能对我们之前生成的分支形态发生过程进行综合的系统级理解。基于局部增殖的肺分支建模模拟框架。该模型是有限的,因为基底膜动力学对于分支至关重要。我们的假设是,由 Rho 激酶 (ROCK) 介导的信号传导控制的基底膜动力学是唾液腺分支形态发生的关键组成部分。为了解决这一假设并创建一个框架来理解基底膜动力学在分支形态发生过程中的作用,我们提出了五个具体目标:具体目标 1 基于水平集方法开发唾液腺分支形态发生的模拟框架,具体目标 2 开发实验模型系统,并将实验结果与新数学模型和模拟框架的预测进行比较,具体目标 3 研究细胞骨架抑制剂对分支形态发生的功能,并使用该数据进行训练该模型的具体目标 4 确定 ROCK 抑制剂是否影响分支形态发生过程中的细胞骨架张力,具体目标 5 确定 ROCK 影响分支形态发生的细胞机制。该项目开发的强大的模拟框架和数学模型将构成开发唾液腺分支形态发生综合模型的关键的第一步。重要的是,它将通过揭示缺失的环节并为未来的研究提出方向来指导实验人员。此外,随着获得更多数据,可以修改数学模型和模拟框架,并将为我们提供预测并最终控制不同基质基质上的细胞行为的工具,以实现功能性唾液腺的智能工程。项目叙述:从这笔赠款中获得的数据将推进有关基底膜在控制唾液腺分支形态发生中的作用的基础科学知识。此外,我们将创建一个数学模型,其中结合了生化和物理控制的实验分析。该模型将在适当的数值框架中实施。该软件工具将通过前端用户友好界面进行访问,以便其他实验生物学家可以将其用作研究工具,在进行活体组织实验之前在计算机中测试假设。最后,在生成允许我们在此背景下描述和预测细胞行为的模型时,我们将深入了解控制细胞以进行需要预测细胞行为的组织工程的新方法。这项工作将导致组织工程新模型的产生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dirk Hartmann其他文献

Dirk Hartmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

肌动蛋白成核促进因子SHRC的结构和分子机制的研究
  • 批准号:
    32301034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
  • 批准号:
    82371081
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
  • 批准号:
    12372314
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
  • 批准号:
    82370648
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
  • 批准号:
    32371053
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Calcium and Pancreatic Stimulus-Secretion Coupling
钙和胰腺刺激分泌耦合
  • 批准号:
    7905584
  • 财政年份:
    2009
  • 资助金额:
    $ 31.98万
  • 项目类别:
Modeling Dynamics of Salivary Gland Branching Morphogenesis
唾液腺分支形态发生的动力学建模
  • 批准号:
    8291130
  • 财政年份:
    2008
  • 资助金额:
    $ 31.98万
  • 项目类别:
Modeling Dynamics of Salivary Gland Branching Morphogenesis
唾液腺分支形态发生的动力学建模
  • 批准号:
    8117738
  • 财政年份:
    2008
  • 资助金额:
    $ 31.98万
  • 项目类别:
Modeling Dynamics of Salivary Gland Branching Morphogenesis
唾液腺分支形态发生的动力学建模
  • 批准号:
    7664568
  • 财政年份:
    2008
  • 资助金额:
    $ 31.98万
  • 项目类别:
Modeling Dynamics of Salivary Gland Branching Morphogenesis
唾液腺分支形态发生的动力学建模
  • 批准号:
    7908906
  • 财政年份:
    2008
  • 资助金额:
    $ 31.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了