Brain-Inspired Neuronal Model of Attention and Memory

受大脑启发的注意力和记忆神经元模型

基本信息

  • 批准号:
    EP/D036364/1
  • 负责人:
  • 金额:
    $ 19.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Attention is necessary and vital for living organisms due to the limited processing capability of the visual system which precludes the rapid analysis of the whole visual scene. Selective visual attention is a cognitive process that allows a living organism to extract from the incoming visual information the part that is most important at a given moment and that should be processed in more detail. For example, detailed processing of the extracted information can include novelty detection and allocation of a novel object to memory.In this project a large-scale brain-inspired model of hierarchically organised spiking neurons will be developed, that solves the problem of consecutive selection of objects by combining object oriented attention, memory, and novelty detection. Since we believe that the brain does not invent a special processing mechanism for each cognitive function but adapts similar mechanisms for a particular type of processing, it is a challenge to develop a model based on a small set of general principles of information processing (e.g. synchronisation, adaptation of natural frequencies, resonance amplitude increase). We believe that these theoretical principles are the key to the performance of the biological brain and within the proposed research will be implemented for the first time in combined model of attention and memory. Such developments offer great potential, both in shedding fresh light on the basic mechanisms underpinning information processing in the brain and in the design of a new generation of computational devices, cognitive robots, etc.
由于视觉系统的处理能力有限,因此对活生物体的关注是必要的,至关重要,这阻止了整个视觉场景的快速分析。选择性视觉关注是一个认知过程,它允许活生物体从传入的视觉信息中提取出在给定时刻最重要的部分,应更详细地处理。例如,提取的信息的详细处理可以包括新颖性检测和分配新的对象为记忆。在该项目中,将开发出大规模的脑启发的大脑启发的模型,这些模型将开发出层次有组织的尖峰神经元,该模型通过结合对象的注意力,记忆,记忆和新颖的检测来解决连续选择对象的问题的问题。由于我们认为大脑没有为每个认知功能发明特殊的处理机制,而是针对特定类型的处理适应了相似的机制,因此开发基于信息处理的一系列通用原理的模型是一个挑战(例如,同步,适应性,天然频率的适应性,弥补,共振效果振幅增加)。我们认为,这些理论原理是生物学大脑表现的关键,在拟议的研究中将首次在关注和记忆的结合模型中实施。这些发展具有巨大的潜力,既可以阐明大脑中信息处理的基本机制以及新一代计算设备,认知机器人等的设计。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Forecasting the 2005 General Election: A Neural Network Approach
预测 2005 年大选:神经网络方法
Selective Attention Model of Moving Objects
  • DOI:
    10.1007/978-3-540-87559-8_37
  • 发表时间:
    2008-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Borisyuk;D. Chik;Y. Kazanovich
  • 通讯作者:
    R. Borisyuk;D. Chik;Y. Kazanovich
International symposium: theory and neuroinformatics in research related to deep brain stimulation.
国际研讨会:脑深部刺激相关研究的理论和神经信息学。
Model of the tadpole spinal cord: The interplay of deterministic and stochastic processes in development of specialised neural circuit
蝌蚪脊髓模型:特定神经回路发育中确定性过程和随机过程的相互作用
  • DOI:
    10.3182/20090622-3-uk-3004.00006
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Borisyuk R
  • 通讯作者:
    Borisyuk R
Stochasticity and functionality of neural systems: Mathematical modelling of axon growth in the spinal cord of tadpole
  • DOI:
    10.1016/j.biosystems.2008.03.012
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Borisyuk, Roman;Cooke, Tom;Roberts, Alan
  • 通讯作者:
    Roberts, Alan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Borisyuk其他文献

Roman Borisyuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Borisyuk', 18)}}的其他基金

Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
  • 批准号:
    BB/X005038/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Research Grant
Dynamic network reconfiguration at the transition between motor programs
运动程序之间转换时的动态网络重新配置
  • 批准号:
    BB/T002352/1
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Research Grant
Cross-modality integration of sensory signals leading to initiation of locomotion
感觉信号的跨模态整合导致运动的启动
  • 批准号:
    BB/L000814/1
  • 财政年份:
    2014
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Research Grant
A neuronal network generating flexible locomotor behaviour in a simple vertebrate: studies on function and embryonic self-assembly
在简单脊椎动物中产生灵活运动行为的神经元网络:功能和胚胎自组装的研究
  • 批准号:
    BB/G006369/1
  • 财政年份:
    2009
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Research Grant

相似海外基金

Circuit-Inspired Strategies to Restore Basal Ganglia Function in Mouse Models of Parkinson’s Disease
恢复帕金森病小鼠模型基底神经节功能的受电路启发的策略
  • 批准号:
    10665167
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    2308924
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
A Genomic Approach to Discovering Novel Cathepsin Inhibitors from Cyanobacteria
从蓝藻中发现新型组织蛋白酶抑制剂的基因组方法
  • 批准号:
    10531556
  • 财政年份:
    2021
  • 资助金额:
    $ 19.77万
  • 项目类别:
Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    1939987
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: MEMONET: Understanding memory in neuronal networks through a brain-inspired spin-based artificial intelligence
合作研究:MEMONET:通过受大脑启发的基于自旋的人工智能了解神经元网络中的记忆
  • 批准号:
    1939999
  • 财政年份:
    2019
  • 资助金额:
    $ 19.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了