What regulates replication origin activation?
什么调节复制起点的激活?
基本信息
- 批准号:BB/E023754/1
- 负责人:
- 金额:$ 117.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All cells contain a complete copy of the organism's DNA, the genetic blue print of life, packaged into discrete units called chromosomes. Since new cells need a copy of the genetic material, the chromosomes must be completely and accurately replicated before the cell can divide. Eukaryotes, such as yeast and humans, have large genomes with millions of bases encoding the genetic information. To ensure complete replication of these genomes within the allowed time, the process of DNA replication starts at multiple sites along each chromosome, called replication origins. These replication origins are specialised DNA sequences that assemble the cellular machinery that then moves along the DNA reading and copying the genetic material. It is essential that the cell activates sufficient replication origins to ensure complete replication of the chromosomes. The importance of controlling replication origin activation is highlighted by the genome instability that may result from uncontrolled chromosome replication. Despite the importance of DNA replication origins we understand little about the DNA sequences that specify and control them. Failures in the processes of DNA replication lead to genetic instability and diseases such as cancer and congenital disorders. I hope that a better understanding of the basic biology that ensures genetic integrity will give new insights that will allow improved diagnosis and treatment of these diseases. In addition to DNA replication, the genetic material is also read and then translated to make proteins. The initial step in this process is called transcription. I have recently found that transcription is detrimental to replication origin function and may therefore play a key role in determining which DNA sequences can function as origins. This project aims to understand how the cell coordinates the two key processes that read the genetic information, DNA replication and DNA transcription, to ensure genomic stability. I will work with budding and fission yeasts, because their genomes are well understood and easily modified to ask experimental questions, and importantly the controls over DNA replication are similar to those in human cells. Furthermore, I have already precisely identified the location of more than half of the budding yeast replication origins providing a large dataset to help me understand the properties of replication origins. By collaborating with leading fission yeast laboratories I will identify the location of replication origins in this species. This will allow, for the first time, genome-wide comparisons of replication origin characteristics between two organisms to determine which properties are shared and therefore likely to be of functional importance. I will go on to look directly at how replication is affected by transcription and what molecular mechanisms are used by the cell to protect replication, and specifically replication origins, from transcription. These experiments will not only allow me to understand how the cell coordinates replication and transcription, but will also give an understanding of what determines replication origin behaviour at the molecular level. Using these results, I will build a computer-based model of the processes of chromosome replication and test the model by comparing the computer predictions with experimental results. Differences between prediction and observation will highlight the limitations in our understanding of DNA replication, indicating important directions for further experiments. This work will uncover how DNA replication origins are specified and how their behaviour is regulated. By understanding, at the molecular level, the processes that control replication origins throughout the genome I will be able to model how whole chromosomes are replicated. This model will allow me to predict weaknesses in the chromosome replication process that may underlie genetic diseases such as cancer.
所有细胞都包含生物体 DNA(生命的遗传蓝图)的完整副本,包装成称为染色体的离散单元。由于新细胞需要遗传物质的副本,因此在细胞分裂之前染色体必须完整且准确地复制。真核生物,例如酵母和人类,拥有庞大的基因组,其中有数百万个编码遗传信息的碱基。为了确保这些基因组在允许的时间内完成复制,DNA 复制过程从每条染色体上的多个位点开始,这些位点称为复制起点。这些复制起点是专门的 DNA 序列,它们组装细胞机器,然后沿着 DNA 移动,读取和复制遗传物质。细胞激活足够的复制起点以确保染色体的完全复制至关重要。不受控制的染色体复制可能导致基因组不稳定,凸显了控制复制起点激活的重要性。尽管 DNA 复制起点很重要,但我们对指定和控制它们的 DNA 序列知之甚少。 DNA 复制过程的失败会导致遗传不稳定以及癌症和先天性疾病等疾病。我希望更好地了解确保遗传完整性的基础生物学将提供新的见解,从而改进这些疾病的诊断和治疗。除了DNA复制之外,遗传物质也被读取然后翻译以制造蛋白质。这个过程的第一步称为转录。我最近发现转录对复制起点功能有害,因此可能在确定哪些 DNA 序列可以作为起点发挥关键作用。该项目旨在了解细胞如何协调读取遗传信息的两个关键过程(DNA 复制和 DNA 转录),以确保基因组稳定性。我将研究出芽酵母和裂殖酵母,因为它们的基因组很容易被理解,并且很容易修改以提出实验问题,而且重要的是,对 DNA 复制的控制与人类细胞中的类似。此外,我已经精确地确定了一半以上的芽殖酵母复制起点的位置,提供了一个大型数据集来帮助我了解复制起点的特性。通过与领先的裂变酵母实验室合作,我将确定该物种的复制起点的位置。这将首次允许对两个生物体之间的复制起点特征进行全基因组比较,以确定哪些特性是共享的,因此可能具有功能重要性。我将继续直接研究复制如何受到转录的影响,以及细胞使用哪些分子机制来保护复制(特别是复制起点)免受转录的影响。这些实验不仅能让我了解细胞如何协调复制和转录,还能让我了解在分子水平上决定复制起点行为的因素。利用这些结果,我将建立一个基于计算机的染色体复制过程模型,并通过将计算机预测与实验结果进行比较来测试该模型。预测和观察之间的差异将凸显我们对 DNA 复制理解的局限性,为进一步实验指明重要方向。这项工作将揭示 DNA 复制起点是如何被指定的以及它们的行为是如何受到调节的。通过在分子水平上了解控制整个基因组复制起点的过程,我将能够模拟整个染色体的复制方式。这个模型将使我能够预测染色体复制过程中的弱点,这些弱点可能是癌症等遗传疾病的根源。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-resolution replication profiles define the stochastic nature of genome replication initiation and termination.
高分辨率复制概况定义了基因组复制起始和终止的随机性质。
- DOI:http://dx.10.1016/j.celrep.2013.10.014
- 发表时间:2013
- 期刊:
- 影响因子:8.8
- 作者:Hawkins M
- 通讯作者:Hawkins M
Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres.
在芽殖酵母中发现非常规着丝粒重新定义了点着丝粒的进化。
- DOI:http://dx.10.1016/j.cub.2015.06.023
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Kobayashi N
- 通讯作者:Kobayashi N
Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site.
对 III 号染色体复制子的分析揭示了 ARS318 沉默子起点的不寻常结构以及起点识别复合物结合位点内的保守 WTW 序列。
- DOI:http://dx.10.1128/mcb.00206-08
- 发表时间:2008
- 期刊:
- 影响因子:5.3
- 作者:Chang F
- 通讯作者:Chang F
A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
芽殖酵母中揭示的 ORC 起源结合机制和起源激活时间之间的联系。
- DOI:http://dx.10.1371/journal.pgen.1003798
- 发表时间:2013
- 期刊:
- 影响因子:4.5
- 作者:Hoggard T
- 通讯作者:Hoggard T
Conservation of replication timing reveals global and local regulation of replication origin activity.
复制时间守恒揭示了复制起点活动的全局和局部调节。
- DOI:http://dx.10.1101/gr.139477.112
- 发表时间:2012
- 期刊:
- 影响因子:7
- 作者:Müller CA
- 通讯作者:Müller CA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conrad Nieduszynski其他文献
Conrad Nieduszynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conrad Nieduszynski', 18)}}的其他基金
Single molecule analysis of Human DNA replication
人类 DNA 复制的单分子分析
- 批准号:
BB/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Single molecule detection of DNA replication errors
DNA复制错误的单分子检测
- 批准号:
BB/W006014/1 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Role of Senataxins in resolving transcription-replication conflicts
Senataxins 在解决转录复制冲突中的作用
- 批准号:
BB/W01520X/1 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Single molecule analysis of genome replication
基因组复制的单分子分析
- 批准号:
BB/N016858/1 - 财政年份:2016
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Mechanisms Regulating Genome Replication
调节基因组复制的机制
- 批准号:
BB/K007211/2 - 财政年份:2014
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Mechanisms Regulating Genome Replication
调节基因组复制的机制
- 批准号:
BB/K007211/1 - 财政年份:2013
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
Stochastic modelling chromosome replication
随机建模染色体复制
- 批准号:
BB/G001596/1 - 财政年份:2009
- 资助金额:
$ 117.39万 - 项目类别:
Research Grant
相似国自然基金
乙肝病毒5’剪接位点调节病毒转录和复制的研究
- 批准号:32370165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
sFGL2调节B细胞应答影响HBV复制及HBsAb产生的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NSP3蛋白通过NSP12和N蛋白调节新型冠状病毒复制和转录机制的研究以及靶向NSP3蛋白药物的筛选
- 批准号:82150204
- 批准年份:2021
- 资助金额:120 万元
- 项目类别:原创探索计划项目
叶酸通过PARP1调节线粒体DNA复制在冠脉支架再狭窄中的作用机制研究
- 批准号:82170343
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
沙门氏菌通过调节巨噬细胞糖代谢增强在细胞内复制和致病性的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
53BP1 regulates genome biology and cellular physiology through liquid phase separation
53BP1 通过液相分离调节基因组生物学和细胞生理学
- 批准号:
10563657 - 财政年份:2023
- 资助金额:
$ 117.39万 - 项目类别:
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10536876 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
A Sphingomyelin Hydrolase Regulates the Late Stages of HIV Assembly and Budding
鞘磷脂水解酶调节 HIV 组装和出芽的后期阶段
- 批准号:
10665753 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
A Sphingomyelin Hydrolase Regulates the Late Stages of HIV Assembly and Budding
鞘磷脂水解酶调节 HIV 组装和出芽的后期阶段
- 批准号:
10548445 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别:
How SSB Regulates YoaA-chi's Function in DNA Damage Repair
SSB 如何调节 YoaA-chi 的 DNA 损伤修复功能
- 批准号:
10684693 - 财政年份:2022
- 资助金额:
$ 117.39万 - 项目类别: