Linking Spatial Variations in Shear Stress with Oxidative Stress
将剪切应力的空间变化与氧化应力联系起来
基本信息
- 批准号:7421053
- 负责人:
- 金额:$ 38.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAortaArterial Fatty StreakAtherosclerosisBiochemicalBiological AvailabilityBlood VesselsCellsCharacteristicsCodeConditionDevelopmentEndothelial CellsEtiologyExperimental DesignsFigs - dietaryGoalsHomologous GeneIn VitroInvestigationLeadLesionLinkLiquid substanceLow Density Lipoprotein oxidationLow-Density LipoproteinsMeasurementMechanicsMediatingModelingModificationMolecularMonitorNADPNADPH OxidaseNew ZealandNitric OxideNitric Oxide SynthaseNitrogenOryctolagus cuniculusOxidantsOxidative StressOxygenPeroxonitritePhysiologicalPlayPost-Translational Protein ProcessingProductionPurposeRangeReactive Nitrogen SpeciesReactive Oxygen SpeciesRegulationRelative (related person)Research PersonnelResolutionRoleSourceStressSuperoxidesSystemSystemic diseaseTechnologyTestingTherapeutic InterventionTranslational Protein ModificationVariantVascular EndotheliumWorkatherogenesisbaseexperiencehuman NOS3 proteinin vivooxidationprogramsresponsesensorshear stressspatial temporal variation
项目摘要
DESCRIPTION (provided by applicant): Atherosclerosis is a systemic disease; however, its manifestations tend to be focal and eccentric. Shear stress is known to regulate NADPH oxidase activities as a source of endothelial superoxide production (O2-.). The Micro Electro Mechanical Systems (MEMS) provide a spatial resolution comparable to the individually elongated endothelial cells and temporal resolution at 71 kHz that permits investigation of the mechanisms whereby spatial and temporal variations of shear stress regulate the oxidant stress-mediated responses. Our working hypothesis is that at arterial bifurcations, the regions of moderate to high shear stress where flow remains unidirectional and axially aligned experience relatively little oxidative stress. In contrast, excess production of reactive oxygen species (ROS) develops largely in regions of relative low shear stress, flow separation, and departure from axjally aligned and unidirectional flow profiles. We propose that the spatial variations in shear stress at bifurcations regulate the relative production of 02-. or ROS and nitric oxide or reactive nitrogen species (RNS) production. At arterial bifurcations where oscillatory shear stress is prevalent, the increase in O2.- production relative to NO production likely limits NO bioavailability through formation of the potent oxidant, peroxynitrite (ONOO-). To interface the MEMS sensors with our hypothesis, we propose following three aims: Aim 1. Demonstrate that MEMS sensors provide spatial resolution to resolve circumferential variations in shear stress in a 3-D symmetric bifurcation model. Aim 2. Determine the effects of spatial variations in shear stress on specific regions of vascular oxidative stress in the aortas of New Zealand White (NZW) rabbits. Aim 3. Elucidate the mechanism(s) by which spatial and temporal variations in shear stress regulate endothelial .NO and O2-. production and subsequent atherogenic LDL modifications. The new shear stress sensing technology can be applied to in vivo measurements that are critical to validating the findings so far in cell systems and in vitro. Further development and application of MEMS technology to in vivo studies in rabbits will be a major goal of this project.
描述(由申请人提供):动脉粥样硬化是一种全身性疾病;但是,它的表现往往是焦点和古怪的。已知剪切应力将NADPH氧化酶活性作为内皮超氧化物产生(O2-。)的来源。微电动机械系统(MEMS)提供了一种空间分辨率,可与单独伸长的内皮细胞和71 kHz处的时间分辨率相当,从而允许研究机制,从而调查了剪切应力的空间和时间变化,从而调节氧化剂应力介导的介导的反应。我们的工作假设是,在动脉分叉,中度至高剪切应力的区域在流动保持单向和轴向比对的经历相对较少的氧化应激。相比之下,反应性氧(ROS)的过量产生在很大程度上在相对低剪切应力,流动分离和脱离斧头排列和单向流动曲线的区域发展。我们建议分叉时剪切应力的空间变化调节02-的相对产生。或ROS和一氧化氮或活性氮种(RNS)产生。在振荡性剪切应力的动脉分叉中,O2的增加。-生产相对于无生产的产量可能会通过形成有效的氧化剂,过氧亚硝酸盐(ONOO-)而不会限制生物利用度。为了将MEMS传感器与我们的假设接口,我们提出以下三个目的:目标1。证明MEMS传感器提供空间分辨率,以在3-D对称分叉模型中解决剪切应力中的圆周变化。目标2。确定新西兰白色(NZW)兔子主动脉中的剪切应力中空间变化对剪切应力的特定区域的影响。目标3。阐明剪切应力中的空间和时间变化调节内皮的机制。没有和o2-。生产和随后的动脉粥样硬化LDL修饰。新的剪切应力传感技术可以应用于体内测量值,这些测量对于验证迄今为止细胞系统和体外发现的发现至关重要。 MEMS技术在兔子体内研究中的进一步开发和应用将是该项目的主要目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tzung K Hsiai其他文献
Tzung K Hsiai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tzung K Hsiai', 18)}}的其他基金
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10626035 - 财政年份:2021
- 资助金额:
$ 38.95万 - 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10315583 - 财政年份:2021
- 资助金额:
$ 38.95万 - 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10458052 - 财政年份:2021
- 资助金额:
$ 38.95万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10661490 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10674980 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10358490 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10038297 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10469660 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10202717 - 财政年份:2020
- 资助金额:
$ 38.95万 - 项目类别:
Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection
运动引起的剪切应力调节血管修复和保护的代谢途径
- 批准号:
10265318 - 财政年份:2019
- 资助金额:
$ 38.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 38.95万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 38.95万 - 项目类别: