Elastomer Surface Pressure Sensor and its Intergration to a 'Smart' surface for Active Flow Control
弹性体表面压力传感器及其与“智能”表面的集成以实现主动流量控制
基本信息
- 批准号:EP/C535847/1
- 负责人:
- 金额:$ 99.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The no-slip condition between the surface of an aircraft and the air in which it flies is responsible not only for drag, but for the lift as well. An obvious potentially huge benefit to a carbon-based economy is the reduction in fuel consumption of aircraft, road vehicles and ships. The technological goal of doing this, together with many others, constitutes an important area of research called flow control and the same techniques used to reduce drag may also be used to help control aircraft by improving their stability and manoeuvrability, that is producing additional lift or thrust when it is needed. This is often done by delaying separation, that is, by preventing stall that could otherwise occur when an aircraft is flying slowly or when it is manoeuvring near the limits of its flight envelope. Another way of doing this could be by introducing small perturbations into the jet that provides the thrust so making it deflect or break up more quickly. Such control of an aircraft would be especially useful if it were unmanned. What we wish to do here is to take advantage of recent developments in materials called polymers (the most often used polymer is PVC or plastic) some of which possess piezoelectric properties. By piezoelectric, we mean that the polymer can be made to expand or compress by applying a voltage or charge, and correspondingly, produce charge when the polymer is compressed. These are also called electroactive polymers or EAPS. If the polymer has the right properties and is designed optimally, it can be used in a great many applications such as the in the body as an artificial muscle. Obviously the most important 'muscle' in the body is the heart which is of course involved in the flow of blood around the body.Our specific application is to take the idea of a dimple on a golf ball and use it as an actuator, as the basis of changing the properties of the boundary layer flow around more-or-less any type of body. Dimples are, in fact, very efficient vortex generators and we have started using dimples that are made of EAP so that the dimple consists of a diaphragm that pops up and down either in a cyclic (or harmonic) fashion, or can be made to do so when required, a so-called ondemand vortex generator. In this case, we would wish the dimple to produce a single vortex of known strength for as long or as short as we would wish, and this requires an understanding of the basic fluid behaviour so that a model may be implemented. This means we have to sense the properties of the boundary layer and we can do this by taking advantage of the piezoelectric behaviour of the EAP. Then the polymer not only has an array of dimples for controlling the boundary layer, but it also has an array of pressure sensors so that the surface pressure signal may used to control the dimples. We can even develop a 'smat all-polymer skin that is made up of separate EAP layers where individual layers can be designed specifically to sense the forces of the skin, or to be actuated as an on-demand dimple actuator. Then we would be able to sense the pressure on the surface and actuate at the same position. Initially, we hope to control boundary layer by open-loop control only. In this case, the measured pressure is only used to diagnose the effect of the dimples. However, much more complicated (and potentially much more beneficial) is closed-loop control, in which the measured pressures are used to determine when and where the dimples should be actuated. This would require a control model, that is a clear expectation of how we would wish the flow to be. Each model would be very dependent on a great many conditions, not least the type of flow.
飞机表面和飞行的空气之间的无滑动条件不仅是为了阻力,而且还负责升降机。对基于碳的经济来说,显而易见的可能是巨大的好处,这是飞机,公路车辆和船舶的燃油消耗减少。这样做的技术目标以及许多其他研究的重要领域称为流量控制,并且用于减少阻力的相同技术也可以用来通过提高其稳定性和可操作性来帮助控制飞机,这在需要时会产生额外的提升或推力。这通常是通过延迟分离来完成的,即防止在飞机缓慢飞行或在飞行信封范围附近操纵飞行时可能发生的摊位。这样做的另一种方法可能是将小型扰动引入喷气机,从而提供推力,从而使其偏转或更快地分解。如果飞机无人驾驶,对飞机的这种控制将特别有用。我们希望在这里做的是利用称为聚合物(最常使用的聚合物是PVC或塑料)的最新发展,其中一些具有压电性能。通过压电,我们的意思是,可以通过施加电压或电荷来使聚合物扩展或压缩,并在压缩聚合物时相应地产生电荷。这些也称为电活性聚合物或EAP。如果聚合物具有合适的特性并且最佳设计,则可以在许多应用中(例如人造肌肉)中使用。显然,人体中最重要的“肌肉”当然是在体内围绕血液流动的心脏。我们的特定应用是将高尔夫球块上的酒窝的想法带入高尔夫球,并将其用作执行器,作为改变边界层围绕任何或任何类型任何类型的任何类型的边界层流动的基础。实际上,酒窝是非常有效的涡旋发电机,我们已经开始使用由EAP制成的酒窝,因此Dimple由隔膜组成,它以环状(或谐波)方式上下弹出,或者可以在需要时做到的,即所谓的Ondemand vortex生成器。在这种情况下,我们希望Dimple能够在我们希望的那样长期或短时间产生已知强度的单个涡旋,这需要了解基本的流体行为,以便可以实现模型。这意味着我们必须感知边界层的特性,我们可以利用EAP的压电行为来做到这一点。然后,聚合物不仅具有用于控制边界层的一系列酒窝,而且还具有一系列压力传感器,因此表面压力信号可以用于控制凹痕。我们甚至可以开发一个由单独的EAP层组成的SMAT全聚合物皮肤,可以专门设计单个层以感知皮肤的力,或者将其作为按需的Dimple Actuator驱动。然后,我们将能够感觉到表面上的压力并处于相同位置。最初,我们希望仅通过开环控制控制边界层。在这种情况下,测得的压力仅用于诊断酒窝的作用。但是,更复杂的(可能更有益)是闭环控制,其中使用测量的压力来确定应在何时何地进行凹痕。这将需要一个控制模型,这清楚地期望我们希望流动如何。每个模型都将非常取决于许多条件,尤其是流动类型。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow control with active dimples
通过主动凹坑进行流量控制
- DOI:10.1017/s0001924000004887
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Dearing S
- 通讯作者:Dearing S
Modelling electro-active polymer (EAP) actuators: electromechanical coupling using finite element software.
电活性聚合物 (EAP) 执行器建模:使用有限元软件进行机电耦合。
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Florence Rosenblatt
- 通讯作者:Florence Rosenblatt
Electroactive polymers for flow control
用于流量控制的电活性聚合物
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:SS Dearing
- 通讯作者:SS Dearing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Morrison其他文献
Monitoring storm tide and flooding from Hurricane Sandy along the Atlantic coast of the United States, October 2012
监测美国大西洋沿岸桑迪飓风造成的风暴潮和洪水,2012 年 10 月
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. McCallum;S. M. Wicklein;R. Reiser;R. Busciolano;Jonathan Morrison;R. Verdi;Jaime A. Painter;E. Frantz;Anthony J. Gotvald - 通讯作者:
Anthony J. Gotvald
Simultaneous Measurements of Surface Spanwise Waves and Velocity in a Turbulent Boundary Layer
湍流边界层中表面展向波和速度的同步测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Isabella Fumarola;M. Santer;Jonathan Morrison - 通讯作者:
Jonathan Morrison
In the path of the Hurricane: impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA
飓风路径:飓风艾琳和热带风暴李对美国北卡罗来纳州至缅因州流域水文学和生物地球化学的影响
- DOI:
10.1007/s10533-018-0423-4 - 发表时间:
2018 - 期刊:
- 影响因子:4
- 作者:
P. Vidon;D. Karwan;A. Andres;S. Inamdar;S. Kaushal;Jonathan Morrison;J. Mullaney;D. Ross;A. Schroth;J. Shanley;B. Yoon - 通讯作者:
B. Yoon
Outcomes of Endovascular Interventions for Popliteal Artery Atherosclerotic Disease
- DOI:
10.1016/j.jvs.2023.03.401 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Armin Tabiei;Sebastian Cifuentes;Randall R. DeMartino;Manju Kalra;Jill J. Colglazier;Bernardo C. Mendes;Todd E. Rasmussen;Jonathan Morrison;Robert Vierkant;Fahad Shuja - 通讯作者:
Fahad Shuja
Where Do We Start
我们从哪里开始
- DOI:
10.1007/978-1-4302-0858-7_2 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Jonathan Morrison - 通讯作者:
Jonathan Morrison
Jonathan Morrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Morrison', 18)}}的其他基金
Understanding and exploiting non-equilibrium effects on turbulent boundary layers: Towards realisable drag reduction strategies
理解和利用湍流边界层的非平衡效应:实现可实现的减阻策略
- 批准号:
EP/R032467/1 - 财政年份:2018
- 资助金额:
$ 99.12万 - 项目类别:
Research Grant
Scale Interactions in Wall Turbulence: Old Challenges Tackled with New Perspectives
壁湍流中的尺度相互作用:用新视角应对旧挑战
- 批准号:
EP/I037938/1 - 财政年份:2012
- 资助金额:
$ 99.12万 - 项目类别:
Research Grant
Bluff-body drag reduction using feedback control
使用反馈控制的钝体减阻
- 批准号:
EP/I005684/1 - 财政年份:2010
- 资助金额:
$ 99.12万 - 项目类别:
Research Grant
Flow Control with Ink-jet Printed Polymer Surfaces
喷墨印刷聚合物表面的流量控制
- 批准号:
EP/F004435/1 - 财政年份:2008
- 资助金额:
$ 99.12万 - 项目类别:
Research Grant
Turbulent flows over rough walls
湍流流过粗糙的墙壁
- 批准号:
EP/D037166/1 - 财政年份:2006
- 资助金额:
$ 99.12万 - 项目类别:
Research Grant
相似国自然基金
基于表面改性与压力诱导的Ni-Cr@ZTA/高铬铸铁复合材料界面行为与磨损性能研究
- 批准号:52305417
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
多级表面微结构的柔性MXene压力传感界面构筑及响应机制研究
- 批准号:52302196
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
表面化学重构调控纤维素纤维拆解、重组和碳化及其对柔性微—纳碳纤维网络压力传感性能的影响
- 批准号:52172147
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
基于表面张力/压力差驱动的低温推进剂在轨加注过程的气液高效分离机理研究与技术开发
- 批准号:52176161
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
表面化学重构调控纤维素纤维拆解、重组和碳化及其对柔性微-纳碳纤维网络压力传感性能的影响
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 99.12万 - 项目类别:
Developmental mechanisms specifying vagal innervation of organ targets
指定器官目标迷走神经支配的发育机制
- 批准号:
10752553 - 财政年份:2024
- 资助金额:
$ 99.12万 - 项目类别:
Innovative Chair to Prevent Pressure Injuries in Persons Living with Alzheimer's Disease and Related Dementias
预防阿尔茨海默病和相关痴呆症患者压力损伤的创新椅子
- 批准号:
10760048 - 财政年份:2023
- 资助金额:
$ 99.12万 - 项目类别:
Platelet Metabolic Stress Induces Thrombo-Inflammation to Drive Endothelial Dysfunction in PH
PH 中血小板代谢应激诱导血栓炎症导致内皮功能障碍
- 批准号:
10736724 - 财政年份:2023
- 资助金额:
$ 99.12万 - 项目类别:
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
- 批准号:
10600765 - 财政年份:2023
- 资助金额:
$ 99.12万 - 项目类别: