Understanding Homology in Genetic Recombination
了解基因重组中的同源性
基本信息
- 批准号:7624427
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-10-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAchievementAddressAdjuvantAffectAffinityAmino Acid SequenceAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAttenuatedBacillus subtilisBacteriaBacterial Drug ResistanceBinding SitesBiochemicalBiological AssayBiological ProcessCellsCellular AssayCommunicable DiseasesCompetenceComplexCoupledDNADNA BindingDataDepthDevelopmentEscherichia coliF FactorFilamentFundingGene MutationGene TransferGenesGenetic RecombinationIn VitroIndividualInterdisciplinary StudyKineticsLaboratoriesLegal patentLifeLigand BindingLightLiteratureMediatingMethodsModelingMolecularMutagenesisMutationNeisseria gonorrhoeaeOrganismPathogenicityPeptide Sequence DeterminationPhenotypePhysiologicalPlayPolymerase GeneProcessPropertyProtocols documentationPseudomonas aeruginosaPublic HealthRangeRateReactionRec A RecombinasesRecombinantsResearchResolutionRoleSOS ResponseSon of Sevenless ProteinsStressStructureStructure-Activity RelationshipTestingTherapeutic IndexThermodynamicsTranslatingUncertaintyVariantZidovudineanalogbactericidebiodefensebiothreatcell killingchemotherapyhomologous recombinationin vivoinhibitor/antagonistinsightinteininterestnovelpathogenpathogenic bacteriaprogramsrapid techniqueresearch studyresponsesmall moleculetooltransmission process
项目摘要
Antibiotic resistance is an escalating problem for modern chemotherapy of bacterial
infectious diseases, and, in combination with the deteriorating pipeline of new
antibacterials, is creating a clear and urgent danger to public health and national
biodefense. Although the mechanisms that facilitate the de novo development, clonal
spread, and horizontal transfer of resistance factors are not fully understood, the rapid
rate at which antibiotic-resistant bacteria arise is likely due to a combination of mutations
introduced during SOS mutagenesis and gene transfer between organisms. Recently,
the Escherichia coli RecA protein¿s activities in SOS induction and homologous
recombination have revealed RecA as a crucial player in these phenomena. A
combination of primary literature, patent data, and unpublished results demonstrate that
RecA mediates a range of phenomena related to bacterial pathogenecity, particularly the
development and transmission of antibiotic resistance genes. Although the high
conservation of RecA among bacterial species compellingly suggests the possibility that
RecA may play similar roles in species other than E. coli, many questions remain as to
how the properties of individual variants are related to their specific biological functions.
To delimit possible models for the RecA-mediated activities that occur in pathogenic
bacteria, we propose three Specific Aims to exploit our recently developed methods for
rapid, parallel purification and rigorous characterization of RecA proteins to elucidate the
relationships between RecA structure, in vitro activities, and physiologic functions.
Briefly, we will (1) systematically define and evaluate structure-function relationships
among RecA proteins from 31 pathogenic bacteria using biochemical and cellular activity
assays; (2) provide insight into the species-specific molecular mechanisms of RecADNA
filament activation using directed mutagenesis and substrate analogs; and (3)
demonstrate that RecA effectors can be delivered into living bacteria to produce
physiological consequences. The successful realization of the Aims will provide (1)
substantial and novel insights into the molecular mechanisms by which different RecA
proteins from select bacterial pathogens carry out their biological functions; (2) a novel
microbiological toolbox that will be central to teasing apart the various roles of RecA in
pathogenicity; and (3) novel methods for the delivery of small-molecule RecA effectors
into bacterial pathogens.
抗生素耐药性是现代细菌化疗面临的一个日益严重的问题
传染病,并且结合新的不断恶化的管道
抗菌药物正在对公共卫生和国家造成明显而紧迫的危险
虽然促进从头发展的机制,克隆。
传播和横向转移的阻力因素尚未完全了解,迅速
抗生素耐药性细菌出现的速度可能是由于突变的组合
最近在 SOS 诱变和生物体之间的基因转移过程中引入。
大肠杆菌 RecA 蛋白¿ SOS 诱导和同源活性
重组表明 RecA 在这些现象中发挥着关键作用。
原始文献、专利数据和未发表结果的结合表明
RecA 介导一系列与细菌致病性相关的现象,特别是
抗生素抗性基因的发展和传播虽然较高。
RecA 在细菌物种中的保守性令人信服地表明以下可能性:
RecA 可能在大肠杆菌以外的物种中发挥类似的作用,但仍有许多问题
各个变体的特性如何与其特定的生物学功能相关。
界定致病性中发生的 RecA 介导的活动的可能模型
细菌,我们提出了三个具体目标来利用我们最近开发的方法
RecA 蛋白的快速、平行纯化和严格表征,以阐明
RecA结构、体外活性和生理功能之间的关系。
简而言之,我们将(1)系统地定义和评估结构-功能关系
利用生化和细胞活性对来自 31 种病原菌的 RecA 蛋白进行分析
(2) 深入了解 RecADNA 的物种特异性分子机制
使用定向诱变和底物类似物激活丝;和(3)
证明 RecA 效应器可以被传递到活细菌中以产生
目标的成功实现将提供(1)
对不同 RecA 的分子机制有实质性和新颖的见解
来自选定细菌病原体的蛋白质发挥其生物学功能;(2)一种新的
微生物学工具箱将成为梳理 RecA 的各种作用的核心
致病性;(3) 递送小分子 RecA 效应物的新方法
转化为细菌性病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT F SINGLETON其他文献
SCOTT F SINGLETON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT F SINGLETON', 18)}}的其他基金
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8308082 - 财政年份:2008
- 资助金额:
$ 32.4万 - 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8535781 - 财政年份:2008
- 资助金额:
$ 32.4万 - 项目类别:
Mechanisms of Spliceosome Assembly and Splice Site Selection
剪接体组装和剪接位点选择的机制
- 批准号:
8325655 - 财政年份:2008
- 资助金额:
$ 32.4万 - 项目类别: