A novel transgenic silkworm system for recombinant glycoprotein production
一种用于重组糖蛋白生产的新型转基因蚕系统
基本信息
- 批准号:7368649
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-29 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAntibodiesAnticoagulantsAreaBasic ScienceBiologicalBiomedical EngineeringBiomedical ResearchBioreactorsBiotechnologyBlood ClotBlood Coagulation FactorBlood coagulationBombyxCarbohydratesCell LineCellsClinicalCoupledDataDevelopmentEctopic ExpressionEngineeringEnzymesEpoetin AlfaEukaryotaEukaryotic CellEvolutionGene ExpressionGene TransferGenesGenetic TransformationGlandGlycoproteinsHumanIndustryInsect ProteinsInsectaLinkLower OrganismMetabolicMethodsOrganPathway interactionsPositioning AttributeProcessProductionProtein EngineeringProtein GlycosylationProteinsPublishingPurposeRecombinant ProteinsRecombinantsRecordsReportingResearchResearch PersonnelRoche brand of trastuzumabScientistSideSilkSystemTenecteplaseTestingTherapeuticTissuesTodayTransgenesTransgenic OrganismsVaccinesVertebral columnWorkclinical applicationclinically relevantcostcytokineexperienceglycoprotein structureglycosylationinnovationinterestnovelpolypeptidepromoterresearch studyskillstoolvector
项目摘要
DESCRIPTION (provided by applicant): Many biomedically significant proteins, including antibodies, cytokines, anticoagulants, blood clotting factors, and others are glycoproteins. Thus, there is a high demand for systems that can be used to produce recombinant glycoproteins for basic biomedical research and direct clinical applications. However, currently available recombinant protein production systems cannot meet this demand. In fact, no currently available system can produce large amounts of recombinant glycoproteins in properly glycosylated form at relatively low cost. The long-term objective of this proposal is to genetically engineer the silkworm to fulfill these requirements and provide a new system for recombinant glycoprotein production. Recent studies have shown that the silkworm silk gland, which is a highly efficient silk protein production and secretion organ, can be genetically engineered to efficiently produce and secrete recombinant proteins. But, transgenic silkworms have been neither developed nor used for recombinant glycoprotein production. The major impediment is that the endogenous protein glycosylation pathways of the silk gland cannot be expected to properly glycosylate higher eukaryotic glycoproteins. We will use metabolic engineering to overcome this impediment, as part of a broader effort to develop the silkworm as a new system for recombinant human glycoprotein production. The basic approach will be to use the piggyBac vector system to isolate transgenic silkworms encoding (1) higher eukaryotic enzymes needed to humanize the native silk gland protein N-glycosylation pathway and (2) a recombinant human N-glycoprotein. Each transgene will be placed under the control of a tissue-specific promoter that will target its expression to the silk gland. There are no previous reports of recombinant glycoprotein production using any type of transgenic insect as a bioreactor. In addition, there are no previous reports of engineering a protein glycosylation pathway in any multicellular animal. Therefore, the proposal to use the silk gland of a transgenic silkworm as a bioreactor for recombinant glycoprotein production and secretion, coupled with the proposal to metabolically engineer the protein N-glycosylation pathway in a major organ of this lower eukaryote, is truly original and innovative. The specific aims of this proposal are (1) To construct and test piggyBac vectors for silk gland-specific expression of genes encoding (1a) enzymes needed to humanize the silkworm protein N-glycosylation pathway and (1b) genes encoding a recombinant human glycoprotein of interest; (2) To use the piggyBac vectors from aim 1 to produce transgenic silkworms; and (3) To assess recombinant glycoprotein production, secretion, and glycosylation by the transgenic silkworms from aim 2.The glycoproteins are a major subclass of proteins distinguished by the presence of carbohydrate side chains covalently linked to the polypeptide backbone. Many different types of biomedically significant proteins, such as antibodies, cytokines, anticoagulants, blood clotting factors are glycoproteins. Modern biomedical researchers studying human glycoproteins or producing them for clinical use rely heavily on recombinant protein production systems. Thus, there is a high demand for systems that can be used to produce recombinant glycoproteins. Unfortunately, few of the currently available systems are well suited for the production of recombinant glycoproteins, as few can produce higher eukaryotic glycoproteins with authentic carbohydrate side chains. Thus, the basic purpose of the research proposed herein is to create a new system that can be used to produce recombinant glycoproteins for basic biomedical research and direct clinical applications. More specifically, we will genetically engineer the silkworm to create this new system. While it might seem strange to target a caterpillar, such as the silkworm, to develop a recombinant glycoprotein production system, we have good reasons to do so. One major reason is that the silkworm silk gland has evolved over millions of years as a highly efficient protein production and secretion organ. Furthermore, several published studies have shown that this organ can be engineered to efficiently produce and secrete recombinant proteins. However, silkworms have not been used for recombinant glycoprotein production because their endogenous protein glycosylation pathways cannot properly glycosylate foreign, higher eukaryotic glycoproteins. Together, the Jarvis and Fraser labs are uniquely positioned to address this problem. The Jarvis lab has been studying and engineering insect protein glycosylation pathways for the past decade and the Fraser lab has developed a superb system for efficient genetic transformation of insects, particularly the silkworm. Thus, we plan to combine our skills to isolate transgenic silkworms that will encode both the higher eukaryotic enzymes needed to humanize their protein glycosylation pathway and a biomedically relevant human glycoprotein of interest. Importantly, the expression of each transgene will be specifically targeted to the silk gland placed using a tissue-specific promoter. There are no previous reports of recombinant glycoprotein production using any type of transgenic insect as a bioreactor. There also are no previous reports of engineering a protein glycosylation pathway in any multicellular animal. Therefore, our proposal to use the silk gland of a transgenic silkworm as a bioreactor for recombinant glycoprotein production and secretion, coupled with our proposal to metabolically engineer the protein N-glycosylation pathway in a major organ of this lower eukaryote, is truly original and innovative. The successful development of the silkworm as a system for recombinant glycoprotein production would have a broad impact with implications in many areas of biomedical research. A better tool for recombinant glycoprotein production would facilitate basic research on glycoprotein structure and function. It also could be used in the biotechnology industry to produce recombinant glycoproteins for clinical use as vaccines or therapeutics. Again, while it might seem like a strange platform, the idea to use caterpillars for the production of non-glycosylated proteins has already been commercialized (see www.c-perl.com). The biotechnological impact of this system could be huge, considering that many high profile, clinically relevant proteins, such as antibodies (e.g. herceptin.), cytokines (e.g. EPOGEN), and anticoagulants (e.g. Tenecteplase") are glycoproteins. At a more basic level, the metabolic engineering effort, which is key to this project, represents an elaborate ectopic expression experiment that will broadly address the biological significance of the differences in protein N-glycosylation pathways of lower and higher eukaryotes. These results will be of great interest to basic scientists, particularly glycobiologists studying protein N-glycosylation in lower organisms and the evolution of protein glycosylation pathways. Finally, these results will be of great interest to bioengineers working to overcome the evolutionary limitations of lower eukaryotic systems for recombinant glycoprotein production.
描述(由申请人提供):许多具有生物医学意义的蛋白质,包括抗体、细胞因子、抗凝剂、凝血因子等都是糖蛋白。因此,对可用于生产重组糖蛋白用于基础生物医学研究和直接临床应用的系统有很高的需求。然而,目前可用的重组蛋白生产系统无法满足这一需求。事实上,目前没有可用的系统能够以相对较低的成本生产大量适当糖基化形式的重组糖蛋白。该提案的长期目标是对蚕进行基因改造以满足这些要求,并为重组糖蛋白生产提供新的系统。最近的研究表明,蚕丝腺是一种高效的丝蛋白生产和分泌器官,通过基因工程可以高效地生产和分泌重组蛋白。但是,转基因蚕尚未被开发或用于重组糖蛋白生产。主要障碍是丝腺的内源蛋白糖基化途径不能正确地糖基化高等真核糖蛋白。我们将利用代谢工程来克服这一障碍,作为将蚕开发为重组人类糖蛋白生产的新系统的更广泛努力的一部分。基本方法是使用piggyBac载体系统分离编码(1)天然丝腺蛋白N-糖基化途径人源化所需的高级真核酶和(2)重组人N-糖蛋白的转基因蚕。每个转基因都将置于组织特异性启动子的控制之下,该启动子将其表达靶向丝腺。以前没有关于使用任何类型的转基因昆虫作为生物反应器生产重组糖蛋白的报道。此外,之前还没有在任何多细胞动物中设计蛋白质糖基化途径的报道。因此,利用转基因蚕的丝腺作为重组糖蛋白生产和分泌的生物反应器的建议,加上在这种低等真核生物的主要器官中对蛋白质N-糖基化途径进行代谢工程的建议,是真正具有原创性和创新性的。 。该提案的具体目标是(1)构建并测试piggyBac载体,用于丝腺特异性表达编码(1a)使蚕蛋白N-糖基化途径人源化所需的酶的基因和(1b)编码重组人糖蛋白的基因兴趣; (2)利用目标1的piggyBac载体生产转基因蚕; (3) 评估目标 2 中转基因蚕的重组糖蛋白产生、分泌和糖基化。糖蛋白是蛋白质的主要亚类,其特征在于存在与多肽主链共价连接的碳水化合物侧链。许多不同类型的具有生物医学意义的蛋白质,例如抗体、细胞因子、抗凝剂、凝血因子都是糖蛋白。现代生物医学研究人员研究人类糖蛋白或生产用于临床的糖蛋白,很大程度上依赖于重组蛋白生产系统。因此,对可用于生产重组糖蛋白的系统有很高的需求。不幸的是,目前可用的系统很少适合生产重组糖蛋白,因为很少有系统可以生产具有真正的碳水化合物侧链的高级真核糖蛋白。因此,本文提出的研究的基本目的是创建一个可用于生产重组糖蛋白的新系统,用于基础生物医学研究和直接临床应用。更具体地说,我们将对蚕进行基因改造来创建这个新系统。虽然以蚕等毛毛虫为目标来开发重组糖蛋白生产系统似乎很奇怪,但我们有充分的理由这样做。一个主要原因是蚕丝腺经过数百万年的进化,成为一种高效的蛋白质生产和分泌器官。此外,几项已发表的研究表明,该器官可以经过改造以有效生产和分泌重组蛋白。然而,蚕尚未用于重组糖蛋白生产,因为它们的内源蛋白糖基化途径不能正确地糖基化外来的高等真核糖蛋白。贾维斯和弗雷泽实验室在解决这一问题方面具有独特的优势。贾维斯实验室在过去十年中一直在研究和改造昆虫蛋白糖基化途径,弗雷泽实验室开发了一种用于昆虫(尤其是蚕)高效遗传转化的卓越系统。因此,我们计划结合我们的技能来分离转基因蚕,这些蚕将编码人性化其蛋白质糖基化途径所需的高等真核酶和生物医学相关的感兴趣的人类糖蛋白。重要的是,每个转基因的表达将专门针对使用组织特异性启动子放置的丝腺。以前没有关于使用任何类型的转基因昆虫作为生物反应器生产重组糖蛋白的报道。之前也没有关于在任何多细胞动物中设计蛋白质糖基化途径的报道。因此,我们利用转基因蚕丝腺作为重组糖蛋白生产和分泌的生物反应器的建议,加上我们在这种低等真核生物的主要器官中代谢改造蛋白质N-糖基化途径的建议,是真正原创和创新的。 。蚕作为重组糖蛋白生产系统的成功开发将对生物医学研究的许多领域产生广泛的影响。更好的重组糖蛋白生产工具将促进糖蛋白结构和功能的基础研究。它还可用于生物技术行业生产重组糖蛋白,用于临床疫苗或治疗药物。同样,虽然它看起来像是一个奇怪的平台,但使用毛毛虫生产非糖基化蛋白质的想法已经商业化(参见 www.c-perl.com)。考虑到许多备受关注的临床相关蛋白质,例如抗体(例如赫赛汀)、细胞因子(例如 EPOGEN)和抗凝剂(例如替奈普酶)都是糖蛋白,该系统的生物技术影响可能是巨大的。代谢工程工作是该项目的关键,它代表了一项精心设计的异位表达实验,该实验将广泛解决蛋白质差异的生物学意义低等和高等真核生物的 N-糖基化途径将引起基础科学家,特别是研究低等生物中蛋白质 N-糖基化和蛋白质糖基化途径进化的糖生物学家的极大兴趣。致力于克服低等真核系统重组糖蛋白生产的进化限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald L. Jarvis其他文献
Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells
重组杆状病毒感染的昆虫细胞中人组织纤溶酶原激活剂的糖基化和分泌
- DOI:
10.1128/mcb.9.1.214-223.1989 - 发表时间:
1989 - 期刊:
- 影响因子:5.3
- 作者:
Donald L. Jarvis;Max D. Summers - 通讯作者:
Max D. Summers
Effects ofBaculovirus Infection on IEl-Mediated Foreign GeneExpression inStably Transformed Insect Cells
杆状病毒感染对稳定转化昆虫细胞中 IEl 介导的外源基因表达的影响
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Donald L. Jarvis - 通讯作者:
Donald L. Jarvis
Donald L. Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald L. Jarvis', 18)}}的其他基金
Impact of Fc N-glycan structure on HIV-specific antibody functions
Fc N-聚糖结构对 HIV 特异性抗体功能的影响
- 批准号:
9322012 - 财政年份:2016
- 资助金额:
$ 29.93万 - 项目类别:
Elucidating the cellular mechanisms of prion propagation and clearance for devisi
阐明朊病毒传播和清除的细胞机制
- 批准号:
8663969 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Elucidating the cellular mechanisms of prion propagation and clearance for devisi
阐明朊病毒传播和清除的细胞机制
- 批准号:
9070005 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Elucidating the cellular mechanisms of prion propagation and clearance for devisi
阐明朊病毒传播和清除的细胞机制
- 批准号:
8847411 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Elucidating the cellular mechanisms of prion propagation and clearance for devisi
阐明朊病毒传播和清除的细胞机制
- 批准号:
8465922 - 财政年份:2012
- 资助金额:
$ 29.93万 - 项目类别:
Engineering transgenic silkworms to produce spider silk fibers
工程转基因蚕生产蜘蛛丝纤维
- 批准号:
7364972 - 财政年份:2007
- 资助金额:
$ 29.93万 - 项目类别:
Engineering transgenic silkworms to produce spider silk fibers
工程转基因蚕生产蜘蛛丝纤维
- 批准号:
7492091 - 财政年份:2007
- 资助金额:
$ 29.93万 - 项目类别:
A novel transgenic silkworm system for recombinant glycoprotein production
一种用于重组糖蛋白生产的新型转基因蚕系统
- 批准号:
7908796 - 财政年份:2007
- 资助金额:
$ 29.93万 - 项目类别:
A novel transgenic silkworm system for recombinant glycoprotein production
一种用于重组糖蛋白生产的新型转基因蚕系统
- 批准号:
7666717 - 财政年份:2007
- 资助金额:
$ 29.93万 - 项目类别:
相似国自然基金
建立新型的基因编辑小鼠生物反应器广谱表达抗肠毒素B(SEB)单克隆抗体
- 批准号:31900676
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
TLR4调控系统性红斑狼疮中自身反应性B-1a细胞活化的作用及机理研究
- 批准号:81901635
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
TRAF6/mTOR双向调控巨噬细胞极化在放疗联合PD-1抗体诱导远隔效应中的作用及机制研究
- 批准号:81903135
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
超高效免疫磁MOFs纳米材料设计及其在动物源样品前处理中的应用研究
- 批准号:31873026
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
哺乳动物细胞抗体人工进化平台的研究
- 批准号:31870923
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
DRUG DISCOVERY BY DIRECTED EVOLUTION IN MAMMALIAN CELLS
通过哺乳动物细胞定向进化发现药物
- 批准号:
10644749 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
- 批准号:
10495114 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别: