Training in Biomedical Discovery from Large Scale Data Sets
大规模数据集生物医学发现培训
基本信息
- 批准号:7293588
- 负责人:
- 金额:$ 21.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-30 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdvertisingAdvisory CommitteesAlgorithmsAmericanAnimal ModelAnnual ReportsApoptosisApplications GrantsAppointmentArchivesAreaArtificial IntelligenceArtsAwardBacteriaBehaviorBiochemistryBioinformaticsBiologicalBiological Neural NetworksBiological ProcessBiological SciencesBiologyBiomedical ComputingBiomedical ResearchBiophysicsBiotechnologyCase StudyCell physiologyCellsCellular biologyChromosome abnormalityCollaborationsCommittee MembersCommunicable DiseasesCommunitiesComplexComputational BiologyComputational Molecular BiologyComputational ScienceComputational algorithmComputer AssistedConditionConsultationsCounselingCountryCryoelectron MicroscopyCytoskeletonDataData SetData SourcesDatabasesDepthDevelopmentDigital Signal ProcessingDisciplineDiseaseDissectionDoctor of PhilosophyDocumentationEducational CurriculumEducational StatusEducational process of instructingEducational workshopEndoplasmic ReticulumEngineeringEnrollmentEnsureEquilibriumEvaluationEventFacility Construction Funding CategoryFacultyFeedbackFigs - dietaryFosteringFoundationsFourier TransformFrequenciesFundingFutureFuture GenerationsGene ChipsGene ExpressionGenerationsGenesGeneticGenetic MedicineGenetic ModelsGenetics and MedicineGenomeGenomicsGoalsGolgi ApparatusGrantGrowthHandHeredityHome environmentImageImageryImaging technologyIn Situ HybridizationIndividualInstitutionInterdisciplinary StudyInternationalInternshipsInterventionInterviewIon TransportJournalsKnowledgeLaboratoriesLanguageLearningLengthLettersLibrariesLifeMachine LearningMalignant NeoplasmsMapsMarketingMathematicsMeasurementMedical centerMembraneMentorsMethodologyMethodsMicroscopyMiningMitochondriaModelingMolecularMolecular BiologyMolecular StructureMonitorMusNamesNatureNumbersOccupationsOncogenesOntologyOperative Surgical ProceduresOpticsOrganismPaperPathway interactionsPatternPattern RecognitionPeer GroupPeer ReviewPersonsPhysiologicalPlayPliabilityPostdoctoral FellowPreparationPrincipal Component AnalysisPrincipal InvestigatorPrintingProcessProgram EvaluationProtein Interaction MappingProtein-Protein Interaction MapProteinsProteomicsPublic HealthPublicationsPublished CommentRangeRecruitment ActivityRegulator GenesReportingResearchResearch PersonnelResearch Project GrantsResearch TrainingResolutionResourcesRiceRoboticsRoleRotationSamplingSchoolsScienceScientistSecureSemanticsSequence AnalysisSeriesShapesSideSignal PathwaySignal TransductionSocial InteractionSocietiesSourceSpecimenStandards of Weights and MeasuresStructureStudentsSuggestionSystemSystems BiologyTechniquesTechnologyTestingTexasThinkingTimeTissuesTrainingTraining ActivityTraining ProgramsTranslatingUniversitiesUpdateVisionWeekWorkWritingYeastsbasebiomedical scientistcancer cellcancer typecareercomputer codecomputer programcomputer sciencecomputerized data processingcomputerized toolsconceptcostdata acquisitiondata integrationdata managementdata miningdata modelingdaydensitydesigndesiredrinkingexperiencefallsfunctional genomicsgulf coasthuman diseaseimage processingimage reconstructionindexinginterdisciplinary collaborationinterestknowledge baselecturesmacromolecular assemblymacromoleculemecarzolemembermodels and simulationnovelnovel strategiesnucleocytoplasmic transportparallel architecturepeerposterspre-doctoralprogramsrelating to nervous systemrepositoryshared memorysimulationskillssoftware developmentstatisticsstructural biologysymposiumtheoriestoolvector
项目摘要
DESCRIPTION (provided by applicant): The development of genomics, proteomics and advanced imaging technology has resulted in the accumulation of vast amounts of biological data. As large scale data sets become predominant in biomedical research, we are approaching a paradigm shift in which the process of discovery is data-driven, and in which data are the source of hypotheses as well as the means for testing them. These masses of data are rich sources of information; however, extracting meaningful information can be a daunting challenge, and often presents a bottleneck for the discovery process. Thus, there is a pressing need for interdisciplinary training of scientists who understand the data, how they are generated, and what they are used for. In addition, these scientists must become developers and highly skilled users of the new computational tools necessary to analyze large data sets. The goal of this program is to train students to become proficient in the following areas: 1. Data acquisition. This will include knowledge of the methods of genomics, proteomics and imaging. 2. Computation. This will include knowledge of mathematical and statistical algorithms, implementation of effective computer codes as well as an emphasis on methods of data warehousing in relational, deductive and other databases. 3. Data integration. This is a critical area that involves extracting useful information from the heterogeneous data sets at various spatial and temporal scales. It will include knowledge of methods of modeling and simulation of systems from the molecular to the organism level. There will also be an emphasis on computational data mining methods. The core of the program will be research-based training in interdisciplinary teams under the guidance of at least two mentors from disparate disciplines (i.e., computational/mathematical and biomedical sciences). Training activities will consist of specialized didactic coursework as well as seminars, journal clubs and a student-faculty retreat. This will be a cross-institutional training program with faculty drawn from departments ranging from computer science and statistics to genetics and medicine, in five participating institutions in the Gulf Coast Consortia in the Houston Area. The training of scientists equipped to manage and extract information from large data sets will greatly facilitate biological discovery in areas such as infectious disease and cancer and therefore this training program will have a direct, positive impact on public health.
描述(由申请人提供):基因组学,蛋白质组学和先进成像技术的开发导致了大量生物学数据的积累。随着大规模数据集在生物医学研究中占主导地位,我们正在接近发现发现过程是数据驱动的范式转变,其中数据是假设的来源以及测试它们的手段。这些数据是丰富的信息来源。但是,提取有意义的信息可能是一个艰巨的挑战,并且经常为发现过程提供瓶颈。因此,迫切需要对了解数据,如何生成以及使用的方法的科学家进行跨学科培训。此外,这些科学家必须成为分析大型数据集所需的新计算工具的开发人员和高技能用户。该计划的目的是培训学生在以下领域熟练:1。数据获取。这将包括了解基因组学,蛋白质组学和成像方法的知识。 2。计算。这将包括有关数学和统计算法的知识,实施有效的计算机代码以及强调关系,演绎和其他数据库中数据仓库的方法。 3。数据集成。这是一个关键领域,涉及从各种空间和时间尺度的异质数据集中提取有用的信息。它将包括了解从分子到生物水平的系统建模和模拟方法的知识。还将强调计算数据挖掘方法。该计划的核心将是至少两名来自不同学科的导师(即计算/数学和生物医学科学)的指导的跨学科团队的研究培训。培训活动将包括专业的教学课程以及研讨会,期刊俱乐部和学生教师务虚会。这将是一项跨机构培训计划,由从计算机科学和统计学到遗传学和医学部门的教职员工,在休斯顿地区墨西哥湾海岸财团的五个参与机构中。能够管理和从大型数据集中管理和提取信息的科学家的培训将极大地促进传染病和癌症等领域的生物学发现,因此该培训计划将对公共卫生产生直接,积极的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Palzkill其他文献
Timothy Palzkill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Palzkill', 18)}}的其他基金
Using DNA-encoded Chemical Libraries to Develop Inhibitors of the MCR-1 Colistin Resistance Enzyme
使用 DNA 编码的化学文库开发 MCR-1 粘菌素抗性酶抑制剂
- 批准号:
10613563 - 财政年份:2022
- 资助金额:
$ 21.55万 - 项目类别:
Using DNA-encoded Chemical Libraries to Develop Inhibitors of the MCR-1 Colistin Resistance Enzyme
使用 DNA 编码的化学文库开发 MCR-1 粘菌素抗性酶抑制剂
- 批准号:
10433324 - 财政年份:2022
- 资助金额:
$ 21.55万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10078242 - 财政年份:2019
- 资助金额:
$ 21.55万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10538574 - 财政年份:2019
- 资助金额:
$ 21.55万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10311533 - 财政年份:2019
- 资助金额:
$ 21.55万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8829744 - 财政年份:2013
- 资助金额:
$ 21.55万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
9262855 - 财政年份:2013
- 资助金额:
$ 21.55万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8660631 - 财政年份:2013
- 资助金额:
$ 21.55万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8557707 - 财政年份:2013
- 资助金额:
$ 21.55万 - 项目类别:
Development of Protein-Based Beta-lactam Antibiotic Resistance Diagnostics
基于蛋白质的 β-内酰胺抗生素耐药性诊断的开发
- 批准号:
8112233 - 财政年份:2011
- 资助金额:
$ 21.55万 - 项目类别:
相似海外基金
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 21.55万 - 项目类别:
Training in Biomedical Discovery from Large Scale Data Sets
大规模数据集生物医学发现培训
- 批准号:
7492915 - 财政年份:2006
- 资助金额:
$ 21.55万 - 项目类别:
Alzheimer's Disease Neuroimaging Initiative (ADNI4)
阿尔茨海默病神经影像倡议 (ADNI4)
- 批准号:
10495150 - 财政年份:2004
- 资助金额:
$ 21.55万 - 项目类别:
Neuro-physical-computational Sciences Graduate Training(RMI)
神经物理计算科学研究生培训(RMI)
- 批准号:
7483052 - 财政年份:2004
- 资助金额:
$ 21.55万 - 项目类别:
Alzheimer's Disease Neuroimaging Initiative (ADNI4)
阿尔茨海默病神经影像倡议 (ADNI4)
- 批准号:
10704643 - 财政年份:2004
- 资助金额:
$ 21.55万 - 项目类别: