Venular Control of Retinal Blood Flow
视网膜血流的静脉控制
基本信息
- 批准号:7314514
- 负责人:
- 金额:$ 29.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Angiogenic FactorAnimal ModelAreaBindingBiological AvailabilityBlood VesselsBlood flowCell DeathCellsConstriction procedureDataDevelopmentDiabetes MellitusDiabetic RetinopathyDiffuseEnd PointFunctional disorderHyperglycemiaHypoxiaInflammatoryInjection of therapeutic agentLeadLocalizedMediatingMediator of activation proteinMesenteryModelingMusNitric OxideOxidative StressPatternPlayProductionRattusReactive Oxygen SpeciesRetinaRetinalRetinal DiseasesRoleSmooth MuscleSmooth Muscle MyocytesStreptozocinStreptozocin DiabetesSuperoxidesThinkingThromboxanesTissuesVascular Endothelial Growth FactorsVascular PermeabilitiesVasoconstrictor AgentsVasodilator AgentsWeekarterioleattenuationcountercurrent chromatographydiabeticdiabetic ratimprovedpostcapillary venulereceptorresearch studyvasoconstrictionvenule
项目摘要
DESCRIPTION (provided by applicant): Understanding the microvascular changes of diabetes is crucial to the development of improved therapy. In the diabetic retina, areas of ischemic tissue are thought to lead to deficient oxygenation and the production of vascular endothelial growth factor, which enhances vascular permeability and plays a major role in retinopathy. Our preliminary data in an animal model of diabetes (streptozotocin injection) demonstrate early arteriolar constriction in the initial weeks of hyperglycemia. Experiments from our lab suggest a localized mechanism of microvascular dysfunction, in which mediators derived from inflammatory cells diffuse from venules to closely paired arterioles to induce vasoconstriction, either directly or through an attenuation of the vasodilator nitric oxide. In a related model (microvascular dysfunction in the mesentery of diabetic rats), we previously have demonstrated a substantial attenuation of nitric oxide in arterioles closely paired with postcapillary venules. We hypothesize that the same could be true in the diabetic retina, and that the attenuation in nitric oxide is related to the increase in reactive oxygen species such as superoxide. Moreover, we hypothesize that thromboxane derived locally from inflammatory cells contributes significantly to the arteriolar vasoconstriction. We have obtained exciting preliminary data (in the retina of both mice and rats) indicating that inhibition of thromboxane synthase reverses the arteriolar vasoconstriction induced by diabetes. Thromboxane is a highly potent vasoactive molecule, and can induce vasoconstriction directly by binding to its receptor on vascular smooth muscle cells. In addition, the vasoconstrictor has been found to contribute to oxidative stress, and inhibition of thromboxane acutely elevates nitric oxide bioavailability. Models of streptozotocin-induced diabetes demonstrate retinal hypoxia, increased cell death, an increase in VEGF production, and an increase in vascular permeability. We propose that vasoconstriction contributes to these deleterious consequences, and that improvements in these endpoints can be accomplished via inhibition of thromboxane and reactive oxygen species. Our specific aims are to investigate the role for thromboxane and reactive oxygen species in the early retinal arteriolar constriction induced by diabetes, and to determine whether inhibition of vasoconstriction improves endpoints of diabetic retinal complications.
描述(由申请人提供):了解糖尿病的微血管变化对于开发改进的疗法至关重要。在糖尿病视网膜中,缺血组织区域被认为导致氧合不足和血管内皮生长因子的产生,血管内皮生长因子增强血管通透性并在视网膜病变中发挥重要作用。我们在糖尿病动物模型(注射链脲佐菌素)中的初步数据表明,在高血糖的最初几周内存在早期小动脉收缩。我们实验室的实验表明微血管功能障碍的局部机制,其中源自炎症细胞的介质从小静脉扩散到紧密配对的小动脉,直接或通过血管舒张剂一氧化氮的减弱诱导血管收缩。在相关模型(糖尿病大鼠肠系膜微血管功能障碍)中,我们之前已经证明与毛细血管后微静脉紧密配对的小动脉中一氧化氮的显着减弱。我们假设糖尿病视网膜也是如此,一氧化氮的减弱与超氧化物等活性氧的增加有关。此外,我们假设局部源自炎症细胞的血栓素对小动脉血管收缩有显着贡献。我们已经获得了令人兴奋的初步数据(在小鼠和大鼠的视网膜中),表明抑制血栓素合酶可以逆转糖尿病引起的小动脉血管收缩。血栓烷是一种高效的血管活性分子,可以通过与其血管平滑肌细胞上的受体结合直接诱导血管收缩。此外,还发现血管收缩剂会导致氧化应激,并且抑制血栓素可急剧提高一氧化氮的生物利用度。链脲佐菌素诱导的糖尿病模型表现出视网膜缺氧、细胞死亡增加、VEGF 产生增加以及血管通透性增加。我们认为血管收缩会导致这些有害后果,并且可以通过抑制血栓素和活性氧来实现这些终点的改善。我们的具体目标是研究血栓素和活性氧在糖尿病引起的早期视网膜小动脉收缩中的作用,并确定抑制血管收缩是否可以改善糖尿病视网膜并发症的终点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NORMAN R HARRIS其他文献
NORMAN R HARRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NORMAN R HARRIS', 18)}}的其他基金
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Humanized anti-CXCL1 antibody for bladder cancer therapeutics
用于膀胱癌治疗的人源化抗 CXCL1 抗体
- 批准号:
10290237 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Humanized anti-CXCL1 antibody for bladder cancer therapeutics
用于膀胱癌治疗的人源化抗 CXCL1 抗体
- 批准号:
10454422 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Elucidation of novel anti-angiogenic therapies for the prevention and treatment of neovascular glaucoma
阐明预防和治疗新生血管性青光眼的新型抗血管生成疗法
- 批准号:
10491662 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Elucidation of novel anti-angiogenic therapies for the prevention and treatment of neovascular glaucoma
阐明预防和治疗新生血管性青光眼的新型抗血管生成疗法
- 批准号:
10706506 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
BLRD Merit Review Research Career Scientist (RCS) Award (IK6)
BLRD 优异评审研究职业科学家 (RCS) 奖 (IK6)
- 批准号:
10337024 - 财政年份:2020
- 资助金额:
$ 29.3万 - 项目类别: