Molecular Studies of Eukaryotic Gene Regulation
真核基因调控的分子研究
基本信息
- 批准号:7289142
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tissue formation during development involves the determination, controlled proliferation and specific differentiation of cells in the embryo. Misregulation in any phase of this process can lead to failure in the development of the embryo, severe disease or uncontrolled cellular growth. Thus the study of gene regulation during development provides insight into areas important in human disease. Embryonic muscle formation in vertebrates and Drosophila (the fruit fly) provide excellent model systems in which to study the origin of one of the major tissues in higher organisms. The determination, proliferation, and differentiation of muscle cells during development in both vertebrates and invertebrates depend upon the function of the MyoD family of basic helix-loop-helix proteins, the muscle regulatory factors (MRFs). Determination of the first muscle precursor cells involves the activation of the MRFs in early mesoderm while gene expression characteristic of differentiated muscle remains repressed. Terminal differentiation is marked by the withdrawal of the myoblast from the cell cycle just prior to the activation of the muscle-specific genes and both processes involve the MRFs. Furthermore, greater than 90% of the genes expressed in the dividing muscle cell are shut down in a process that involves massive chromatin reorganization while the muscle-specific genes are activated. Cell cycle control during terminal differentiation is thought to involve the MRFs in a pathway that regulates the phosphorylation status of the retinoblastoma protein, Rb. (Project 1) We have recently shown that ectopically expressed MyoD binds directly to the G1 cyclin-dependent kinase cdk4 to inhibit cell growth and the phosphorylation of Rb. The cdk4-MyoD interaction also blocks the trans activation functions of MyoD by disrupting DNA-binding by the MyoD/E-protein heterodimer. Therefore, high levels of nuclear cdk4 block MyoD function in growing myoblasts while the loss of nuclear cdk4 in the absence of growth factors and mitogens allows MyoD to function. We have identified a 15 amino acid domain on MyoD responsible for the interaction with cdk4. Expression of this domain either as a fusion protein with GST or GFP inhibits the kinase activity of cdk4 in vitro and in vivo, blocking its ability to phosphorylate the retinoblastoma protein, Rb. This results in the cessation of cell growth and induces myoblast differentiation in the presence of mitogens. We have a patent application on the inhibitory activity of the 15 amino acid domain of MyoD on cdk4 kinase activity. We have recently made alanine substitutions in all the positions of the 15 amino acid cdk4-binding domain in order to map the critical residues for interaction. Single substitutions have a marginal affect on inhibitory and binding activity of the domain but two simultaneous substitutions reduce cdk4 binding and kinase inhibition for the various binding domain derivatives. The binding parameters are being determined uisng the BiaCore and the imobilized 15 amino acid derivatives. We have also determined that the MyoD 15 amino acid domain binds to the other major G1 cyclin-dependent kinases, cdk6 and cdk2. cdk6 behaves like cdk4 during muscle differentiation in that cdk6 leaves the nucleus when mitogen levels are reduced but can be induced to re-enter myotube nuclei with the expression of a stable cyclin D1 in the cells. cdk6 phosphorylation of Rb is also inhibited by the MyoD binding domain. However, although cdk2 binds to the same 15 amino acid domain, phosphorylation of histone in vitro is not inhibited. All the in vitro kinase assays are performed using baculovirus produced cyclin D1/cdk4, cyclin D1/cdk6, and cyclin E/cdk2 purified by Flag-tag affinity chromatography. cdk4/6 kinases are inhibited by p16 and p21 while cdk2 activity is only blocked by p21.
发育过程中的组织形成涉及胚胎中细胞的测定,受控的增殖和特异性分化。在此过程的任何阶段,不正体都会导致胚胎发展,严重疾病或不受控制的细胞生长的失败。因此,开发过程中基因调节的研究提供了对人类疾病重要领域的见解。脊椎动物和果蝇(果蝇)中的胚胎肌肉形成提供了出色的模型系统,可以在其中研究高等生物中主要组织之一的起源。脊椎动物和无脊椎动物在发育过程中肌肉细胞的确定,增殖和分化取决于基本螺旋 - 环螺旋蛋白的MYOD家族的功能,即肌肉调节因子(MRFS)。第一肌肉前体细胞的测定涉及MRF在早期中胚层中的激活,而分化肌肉的基因表达特征仍然受到抑制。末端分化是在肌肉特异性基因激活之前从细胞周期中撤出细胞周期的标志性的,并且两个过程都涉及MRF。此外,在分裂肌肉细胞中表达的90%以上的基因在涉及大规模染色质重组的过程中被关闭,而激活了肌肉特异性基因。终末分化过程中的细胞周期控制被认为涉及MRF中的途径,该途径调节视网膜细胞瘤蛋白的磷酸化状态RB。 (项目1)我们最近表明,异位表达的MYOD直接与G1 Cyclin依赖性激酶CDK4结合,以抑制RB的细胞生长和磷酸化。 CDK4-MYOD相互作用还通过破坏MyOD/E蛋白异二聚体DNA结合来阻止MYOD的反式激活函数。因此,高水平的核CDK4阻止了肌细胞在生长肌细胞中的功能,而在没有生长因子和有丝分裂剂的情况下核CDK4的损失使MyOD可以发挥作用。我们已经在MyoD上确定了一个15个氨基酸结构域,负责与CDK4相互作用。该结构域作为具有GST或GFP的融合蛋白的表达抑制了CDK4在体外和体内的激酶活性,从而阻断了其磷酸化视网膜母细胞瘤蛋白RB的能力。这导致停止细胞生长,并在有丝分裂剂的存在下诱导肌细胞分化。我们对MYOD的15个氨基酸结构域对CDK4激酶活性的抑制活性有专利应用。最近,我们在15个氨基酸CDK4结合结构域的所有位置中进行了丙氨酸取代,以绘制关键残基的相互作用。单个取代对域的抑制性和结合活性具有边际影响,但两个同时取代降低了CDK4结合和对各种结合结构域衍生物的激酶抑制作用。结合参数被确定为双子虫,并取代15个氨基酸衍生物。我们还确定MYOD 15氨基酸结构域与其他主要的G1 Cyclin依赖性激酶CDK6和CDK2结合。 CDK6在肌肉分化过程中的表现类似于CDK4,当CDK6降低有丝分裂原水平时,CDK6留下了核,但可以通过细胞中稳定的细胞周期蛋白D1的表达来诱导重新输入肌管核。 RB的CDK6磷酸化也受到MYOD结合结构域的抑制。但是,尽管CDK2与相同的15个氨基酸结构域结合,但体外组蛋白的磷酸化并未抑制。所有体外激酶分析均使用杆状病毒D1/CDK4,细胞周期蛋白D1/CDK6和细胞周期蛋白E/CDK2通过FLAG-TAG亲和色谱纯化。 CDK4/6激酶被p16和p21抑制,而CDK2活性仅被p21阻断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
bruce paterson其他文献
bruce paterson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('bruce paterson', 18)}}的其他基金
相似国自然基金
真核生物转录耦合DNA修复机制的单分子水平研究
- 批准号:32271271
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
真核生物转录耦合DNA修复机制的单分子水平研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于冷冻电镜研究eIF3复合物调控真核生物翻译起始过程的分子机制
- 批准号:32200987
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:青年科学基金项目
真核生物翻译起始因子5A调控PRRSV复制的分子机制研究
- 批准号:31902284
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
内源siRNA通路调控蓝氏贾第鞭毛虫分化的分子机制研究
- 批准号:31401092
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In-depth molecular studies of dynein transport in the RPE
RPE 中动力蛋白运输的深入分子研究
- 批准号:
10573020 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studies on RNA polymerase III-related leukodystrophy
RNA聚合酶III相关脑白质营养不良的研究
- 批准号:
10735229 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Intercepting novel functions of AURKA in gastric tumorigenesis
拦截 AURKA 在胃肿瘤发生中的新功能
- 批准号:
10663953 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Intercepting novel functions of AURKA in gastric tumorigenesis
拦截 AURKA 在胃肿瘤发生中的新功能
- 批准号:
10515693 - 财政年份:2022
- 资助金额:
-- - 项目类别: