Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
基本信息
- 批准号:7067560
- 负责人:
- 金额:$ 68.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-04 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:3T3 cellsbiomaterial compatibilitybiomaterial development /preparationbiomaterial evaluationbiomechanicsbiomimeticsbone regenerationcalcium phosphatecell adhesion moleculesgelhuman tissuehydroxyapatitesimmunocytochemistrylaboratory ratmechanical stressmedical implant sciencenanotechnologyparticlepolymersscanning electron microscopytissue /cell culturetissue support frame
项目摘要
DESCRIPTION (provided by applicant):
This Bioengineering Research Partnership proposal is submitted by a multidisciplinary collaboration of scientists primarily affiliated with the University of California (UC) system. The lead institution is Lawrence Berkeley National Laboratory, with component groups at UC Berkeley and San Francisco campuses. There is also small business collaborator from SkeleTech, Inc., in Bothell, WA. Some of the collaborators have worked together on ceramic projects for over 20 years, while others have worked together on dental research projects for over 10 years. This team has been expanded to include greater expertise in all the disciplines involved in this proposal: materials science, chemistry, biology, and dental/medical science. The research is aimed at development and testing of new implant materials by combining biomimetics with two radically new design philosophies to produce dense and strong bioactive scaffolds that are intended to be partially or completely resorbed and replaced by bone from the host in a sequence resembling bone remodeling. The ultimate goal is to develop strong and tough implant materials for load-bearing applications deriving their strength from nanoparticle hydroxyapatite and their toughness from hydrogel polymers, with the microstructural architecture scale on the order of tens of nanometers and below. Three types of materials will be developed. First, inorganic scaffolds with a dense core and a graded distribution of porosity and surface chemistry will be fabricated by stereolithography and by a novel technology developed in our laboratory based on freeze casting of calcium phosphate suspensions. Second, hydrogels and self-assembling polymers that possess anionic groups and adhesive ligands suitably positioned for the nucleation process and cellular adhesion will be used to direct templatedriven biomimetic mineralization of hydroxyapatite and other biominerals in nanoscopically and microscopically controlled fashion. Third, the resultant porous scaffolds will be used as the matrices to fabricate inorganic-organic composites with improved strength and fracture resistance. This will be achieved by infiltration of the inorganic scaffolds with hydrogels or by direct template-driven biomimetic mineralization of calcium phosphate nanoparticles on the organic scaffolds. Materials that pass the mechanical property tests will be tested in cell cultures and an animal model. Improvement of implants will result in improved health and quality of life for the millions of people who will need implants in the future.
描述(由申请人提供):
这项生物工程研究合作伙伴提案是由主要与加利福尼亚大学(UC)系统相关的科学家的多学科合作提出的。领导机构是劳伦斯·伯克利国家实验室,在加州大学伯克利分校和旧金山校园内拥有组成群体。华盛顿州博塞尔(Skeletech,Inc。)也有小型企业合作者。一些合作者已经共同从事陶瓷项目工作了20多年,而另一些合作者共同从事牙科研究项目已有10多年的历史了。该团队已经扩展到该提案所涉及的所有学科中的更多专业知识:材料科学,化学,生物学和牙科/医学科学。这项研究旨在通过将仿生材料与两种彻底的新设计理念相结合,以开发和测试新的植入物材料,以产生密集而强大的生物活性脚手架,这些脚手架旨在部分或完全在宿主中被部分或完全归因,并以骨骼的顺序替代,以类似于骨骼重塑。最终的目标是开发强大而坚固的植入物材料,用于承载载荷应用,从而从纳米颗粒羟基磷灰石及其从水凝胶聚合物中进行韧性,并具有基于数十纳米及以下的微观结构量表。将开发三种类型的材料。首先,具有密度核心的无机支架和孔隙率和表面化学的分级分布将通过立体光刻造影制造,以及我们实验室中基于磷酸钙悬浮液的冻结而开发的新技术。其次,具有适当位于成核过程和细胞粘附的阴离子基和粘合剂配体的水凝胶和自组装聚合物将用于在纳米和微观控制的时尚中直接对羟基磷灰石和其他生物剂的静态生物映射矿化。第三,所得的多孔脚手架将用作矩阵,以提高强度和断裂耐药性来制造无机有机复合材料。这将通过用水凝胶渗入无机支架或通过有机支架上磷酸钙纳米颗粒的直接模板驱动的仿生矿化来实现。通过机械性能测试的材料将在细胞培养物和动物模型中进行测试。植入物的改善将改善未来需要植入物的数百万人的健康和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTONI P TOMSIA其他文献
ANTONI P TOMSIA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTONI P TOMSIA', 18)}}的其他基金
相似国自然基金
“热点”型纳米标记光学探针设计及在癌胚抗原灵敏检测中的应用研究
- 批准号:31800830
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物膜模拟功能材料的合成及其生物活性的研究
- 批准号:21372262
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
基于石墨烯/仿生酶复合材料修饰的微电极阵列探究角质形成细胞紫外损伤中活性氧分子的作用
- 批准号:21375108
- 批准年份:2013
- 资助金额:78.0 万元
- 项目类别:面上项目
生物兼容的核/壳纳米材料的合成与应用探索
- 批准号:90406003
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:重大研究计划
相似海外基金
Using Block Copolymers to Control Cell Behavior
使用嵌段共聚物控制细胞行为
- 批准号:
7015587 - 财政年份:2005
- 资助金额:
$ 68.08万 - 项目类别:
Using Block Copolymers to Control Cell Behavior
使用嵌段共聚物控制细胞行为
- 批准号:
6868462 - 财政年份:2005
- 资助金额:
$ 68.08万 - 项目类别: