Interactions between geometric group theory and topology

几何群论与拓扑学之间的相互作用

基本信息

  • 批准号:
    2625336
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In geometric group theory, one studies a given group (an algebraic object) as a collection of symmetries of some geometric space. This point of view has been applied successfully to groups from a wide range of topics in mathematics, including random groups, various groups from low-dimensional topology, and more recently the Cremona group.In this project, the groups that we are interested in are the groups of homeomorphisms of surfaces. Surfaces are 2-dimensional objects, and include the surface of a ball, the surface of a ring doughnut, and the surface of a block of wood with holes drilled through it. A homeomorphism of a surface is a continuous bending or stretching of the surface, which can be reversed. Homeomorphisms appear naturally, for instance, consider the surface of a fluid under mixing.The collection of homeomorphisms of a surface forms a group. Surprisingly very little is known about this group, despite its presence in mathematics for more than 100 years. There are in general few tools to study these groups. However Bowden, Hensel, and Webb recently showed that, provided that the "number of holes" in the surface is at least 1, these groups can be studied using techniques from geometric group theory. The exact tool used was the construction of an (uncountably infinite) graph on which the homeomorphism group acts by symmetries, and such that the graph has nice geometry (namely Gromov hyperbolic geometry). This enables algebraic theorems to be proved. Unfortunately this new theory does not carry through in its strongest form for the homeomorphism group of the 2-dimensional sphere. However if we restrict attention to the area-preserving homeomorphisms of the 2-dimensional sphere, then it might be the case that similar tools and constructions will work once again. The goal of the project is to either rule out the existence of such a construction, or prove and utilize it to study the group.This project lies in the EPSRC research areas of "Algebra" and "Geometry and Topology".
在几何群体理论中,一个人研究一个给定的组(代数对象)是某些几何空间的对称性的集合。这种观点已成功地应用于来自数学广泛主题的小组,包括随机组,低维拓扑的各个组以及最近的Cremona群体。在这个项目中,我们感兴趣的组是表面的同态同态。表面是二维物体,包括球的表面,环甜甜圈的表面以及一块木头的表面,并钻了孔。表面的同态性是表面的连续弯曲或拉伸,可以逆转。例如,同构自然而然地考虑在混合下的液体表面。表面的同态形态的集合形成了一组。令人惊讶的是,尽管该群体在数学中存在超过100年,但知之甚少。通常,很少有研究这些组的工具。然而,鲍登,汉斯尔和韦伯最近表明,前提是表面上的“孔数”至少为1,可以使用几何组理论的技术来研究这些组。所使用的确切工具是(无限)图的构造,同态组通过对称性作用,并且该图具有不错的几何形状(即Gromov双曲线几何形状)。这使代数定理得到证明。不幸的是,这种新理论并没有以最强的形式贯穿于二维球体的同态群体。但是,如果我们限制了二维球体保护区域的同态同态的关注,那么可能是类似的工具和结构再次起作用的情况。该项目的目的是排除这种结构的存在,要么证明并利用它来研究该组。该项目在于“代数”和“几何和拓扑”的EPSRC研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
共 3349423 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 669885
前往

的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
    --
  • 项目类别:
    Studentship
    Studentship

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
蝙蝠高耗能行为之间的能量代谢与分配机制研究
  • 批准号:
    32301287
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内环和腔环之间的相互作用对核孔复合物伸缩变化的调控机制
  • 批准号:
    32301015
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
热液流体出溶过程中熔体和流体之间Li同位素平衡分馏行为的实验研究
  • 批准号:
    42302050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
菌根栖息地之间的连接性如何影响生态系统的功能
  • 批准号:
    32371721
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of tooth morphology identification method: collaboration between deep learning and geometric morphometrics
牙齿形态识别方法的发展:深度学习与几何形态测量学的协作
  • 批准号:
    22K06415
    22K06415
  • 财政年份:
    2022
  • 资助金额:
    --
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
  • 批准号:
    20KK0057
    20KK0057
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Interaction between randomness and geometric structures in simplicial complexes
单纯复形中随机性与几何结构之间的相互作用
  • 批准号:
    19K21833
    19K21833
  • 财政年份:
    2019
  • 资助金额:
    --
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
    Grant-in-Aid for Challenging Research (Exploratory)
Interactions between geometric and topological structures
几何结构和拓扑结构之间的相互作用
  • 批准号:
    FT170100316
    FT170100316
  • 财政年份:
    2018
  • 资助金额:
    --
    --
  • 项目类别:
    ARC Future Fellowships
    ARC Future Fellowships
Relations between cluster algebras and crystal bases, geometric crystals
簇代数与晶体基、几何晶体之间的关系
  • 批准号:
    17H07103
    17H07103
  • 财政年份:
    2017
  • 资助金额:
    --
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
    Grant-in-Aid for Research Activity Start-up