A novel approach to predict energy of physical activity

预测身体活动能量的新方法

基本信息

  • 批准号:
    6815102
  • 负责人:
  • 金额:
    $ 33.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The role of physical activity (PA) in many chronic diseases is increasingly being recognized. The accurate and detailed measurement of PA is a crucial prerequisite to further explore its association with health and disease. Small and wearable accelerometers allow objective measurement of PA (PA counts), while also providing a rough estimation of the energy expenditure associated with PA (EEAcT). However, current PA monitors are restricted to using time-averaged signals and linear regression algorithms which consistently provide inaccurate predictions of EEAc-r- the key characteristic of PA intensity. To fundamentally guide the future designs of PA monitors to accurately predict EEAcT, we hypothesize that parameters can be extracted from the raw acceleration and postural signals of multiple body segments. Using a unique combination of sophisticated instruments and technical expertise, we propose to develop a novel analytical approach for accurately predicting EEAc-reutilizing the raw acceleration signals from upper and lower body segments. This is accomplished by continuously measuring movement and postures, at a rate of 32 samples/second, using a custom-designed monitor that consists of an array of 10 accelerometers. We will measure minute-to minute EEAcT using a whole-room indirect calorimeter for a 24-hour period, and a portable calorimeter for a 3-hour free-living period. This measured EEAcT will be used as the target for the prediction model. We will apply an advanced modeling technique (artificial neural networks) to model the extracted PA parameters to arrive at an accurate prediction of EEAcT. Repeated measurements will be used to cross-validate the prediction accuracy of the model. The study is designed to encompass a heterogeneous population sample (n=200) of obese, overweight, and lean adults, and to include a wide range of PA types and intensities. The significance of this research is that our results will provide insight for developing the next-generation PA monitors, such as where on the body the sensors should be placed, what signal parameters should be extracted, and how the analytical algorithms should be applied. In addition, our study will improve and validate EEAcT prediction by several market-available PA monitors, thus offering immediate benefits to their applications in the field.
描述(由申请人提供):越来越多地认识到体育活动(PA)在许多慢性疾病中的作用。 PA的准确和详细的测量是进一步探索其与健康和疾病关联的关键先决条件。小型且可穿戴的加速度计允许对PA(PA计数)进行客观测量,同时还提供了对与PA相关的能量消耗的粗略估计(EEACT)。但是,当前的PA监视器仅限于使用时间平均信号和线性回归算法,这些信号始终提供对EEAC-R的不准确预测PA强度的关键特征。为了从根本上指导PA监测器的未来设计以准确预测EEACT,我们假设可以从多个身体段的原始加速度和姿势信号中提取参数。我们使用复杂的仪器和技术专长的独特组合,建议开发一种新型的分析方法,以准确预测来自上半身和下半身领域的原始加速信号。这是通过使用由10个加速度计阵列组成的自定义设计的显示器以32个样本/秒的速率连续测量运动和姿势来完成的。我们将在24小时内使用整个房间间接热量计测量分钟的EEACT,并在3小时的自由生活期间测量可容纳热量计。该测得的EEACT将用作预测模型的目标。我们将应用高级建模技术(人工神经网络)来对提取的PA参数进行建模,以进行精确的EEACT预测。重复测量将用于交叉验证模型的预测准确性。该研究旨在涵盖肥胖,超重和瘦成年人的异质种群样本(n = 200),并包括多种PA类型和强度。这项研究的意义在于,我们的结果将为开发下一代PA监测器提供见解,例如应放置传感器的位置,应提取哪些信号参数以及应如何应用分析算法。此外,我们的研究将改善和验证几个可获得的PA监视器的EEACT预测,从而为其在该领域的应用带来直接的收益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KONG Y CHEN其他文献

KONG Y CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KONG Y CHEN', 18)}}的其他基金

AUTONOMIC CONTRIBUTIONS TO ENERGY METABOLISM IN HUMANS
自主对人类能量代谢的贡献
  • 批准号:
    7375577
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
Physical Activity Energy Expenditure & Adolescent Obesit
身体活动能量消耗
  • 批准号:
    7023159
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
NOVEL APPROACH TO PREDICT ENERGY OF PHYSICAL ACTIVITY
预测身体活动能量的新方法
  • 批准号:
    7375650
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
THE VALIDATION OF THE IDEEA ACTIVITY MONITOR DEVICE IN PREDICTING ENERGY EXPENDE
IDEEA 活动监测装置预测能源消耗的验证
  • 批准号:
    7375603
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
THE VALIDATION OF THE IDEEA ACTIVITY MONITOR DEVICE IN PREDICTING ENERGY EXPENDE
IDEEA 活动监测装置预测能源消耗的验证
  • 批准号:
    7207238
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
A novel approach to predict energy of physical activity
预测身体活动能量的新方法
  • 批准号:
    6941312
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
PORTABLE PHYSICAL ACTIVITY MONITORS FOR MEASURING ENERGY EXPENDITURE IN ROTC
用于测量后备军官训练队能量消耗的便携式身体活动监测仪
  • 批准号:
    7207279
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
AUTONOMIC CONTRIBUTIONS TO ENERGY METABOLISM IN HUMANS
自主对人类能量代谢的贡献
  • 批准号:
    7207205
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
NOVEL APPROACH TO PREDICT ENERGY OF PHYSICAL ACTIVITY
预测身体活动能量的新方法
  • 批准号:
    7207310
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
Portable Physical Activity Monitors for Measuring Energy Expenditure in ROTC...
用于测量 ROTC 能量消耗的便携式体力活动监测器...
  • 批准号:
    7041463
  • 财政年份:
    2003
  • 资助金额:
    $ 33.57万
  • 项目类别:

相似国自然基金

脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
  • 批准号:
    82200094
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高寒草甸生态系统小型鸟兽生物能学的研究
  • 批准号:
    38670786
  • 批准年份:
    1986
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

An Intelligent Physical Activity Monitor
智能体力活动监测器
  • 批准号:
    7107376
  • 财政年份:
    2006
  • 资助金额:
    $ 33.57万
  • 项目类别:
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
  • 批准号:
    7022662
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
Detection of chewing and swallowing to estimate eating patterns and energy intake
检测咀嚼和吞咽以估计饮食模式和能量摄入
  • 批准号:
    7140644
  • 财政年份:
    2005
  • 资助金额:
    $ 33.57万
  • 项目类别:
Development of Functional MRI for Mouse Phenotyping
用于小鼠表型分析的功能性 MRI 的发展
  • 批准号:
    6860996
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
A novel approach to predict energy of physical activity
预测身体活动能量的新方法
  • 批准号:
    6941312
  • 财政年份:
    2004
  • 资助金额:
    $ 33.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了