Integrated Control of Vascular Pattern Formation
血管模式形成的综合控制
基本信息
- 批准号:6795832
- 负责人:
- 金额:$ 72.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:alpha actininangiogenesisarteriolesbioengineering /biomedical engineeringcell differentiationcell migrationcell proliferationcell typecomputer simulationdevelopmental geneticsembryo /fetusfibroblastsgene targetinggrowth factor receptorsimmunocytochemistrylaboratory mousemammalian embryologymathematical modelmicrocirculationplatelet derived growth factorreceptor expressiontissue /cell culturetransforming growth factorsvascular smooth muscle
项目摘要
This Bioengineering Research Partnership assembles a team led by two biomedical engineers and a molecular physiologist to focus on the integrative control of vascular pattern formation. While vascular assembly and pattern formation will be needed as critical elements of successful therapeutic collateralization of progressively ischemic organs and in tissue engineering of various tissue substitutes in the future, remarkably little is known of the cells involved, the array of signal molecules and their genetic regulation, and the biophysical factors regulating the spatial and temporal dynamics of vascular pattern formation. Key questions now are: what is the origin of cells responsible for the investment of arterioles with contractile cells and what are the signals that control their proliferation, migration, and differentiation? An integrative systems approach is proposed to measure the dynamics of arteriolar pattern formation in vivo across time scales from the embryo to the adult, and spanning spatial scales from genes to cells to whole networks, and to create a new generation of computational approaches to understand the complex interplay of multiple interacting cells and signal molecules. The specific aims are 1) to determine the role of PDGF and TGF-beta in arteriolar pattern formation during embryonic development, 2) to determine the cell types involved, role of PDGF and TGF-beta signaling, and spatial and temporal patterns of arteriolar assembly in adults, and 3) to develop and use a new cell-based computer simulation to perform integrative spatio-temporal analysis of the arterialization process in the embryo and adult, including multi-signal control of fibroblast and smooth muscle cell proliferation, migration, and differentiation. The multidisciplinary team will utilize unique gene-targeted mice in conjunction with innovative in vivo measurements, and integration of the data into the new computational models will improve understanding of the gene circuitry regulating arteriolar pattern formation. This focused partnership with three investigators who have worked together previously brings a unique set of complementary tools to bear on the problem. Year 1 milestones are to obtain the first microvessel mappings of contractile cell recruitment in transgenic mouse embryonic tissues, to implement spatial guidance of arteriolar pattern formation through application of focal growth factors in adult window chambers, and to implement a novel computational model of arterialization that represents smooth muscle cells and fibroblasts discretely. The long term goal is to define the mechanisms that control arteriolar pattern formation, and to provide the basis for powerful therapeutic vascularization procedures that function in the native environment in vivo.
这项生物工程研究伙伴关系组成了由两名生物医学工程师和一名分子生理学家领导的团队,专注于血管模式形成的综合控制。 虽然将需要血管组装和模式形成,因为将来,逐渐缺血器官以及各种组织替代品的组织工程的成功治疗抵押品的关键要素,但对所涉及的细胞,信号分子的阵列及其遗传学因素及其生物物理因素的量化和时间造型的形式形式而言,鲜为人知。 现在的关键问题是:负责用收缩细胞投资的细胞的起源是什么?控制它们的增殖,迁移和分化的信号是什么?提出了一种综合系统方法,以测量从胚胎到成人的时间尺度的体内动力学形成的动力学,并跨越从基因到细胞再到整个网络的空间尺度,并创建新一代的计算方法,以了解多个相互作用细胞和信号分子的复杂相互作用。 具体目的是1)确定胚胎发育过程中PDGF和TGF-BETA在动脉模式形成中的作用,2)确定所涉及的细胞类型,PDGF和TGF-BETA信号传导的作用,以及在成人中开发和使用3)进行整合的ARTORALIOL SPATIOS SPAT的动脉组装过程的空间和时间模式,以进行整合的分析。胚胎和成人,包括对成纤维细胞和平滑肌细胞增殖,迁移和分化的多信号控制。 多学科团队将通过创新的体内测量来利用独特的基因靶向小鼠,将数据集成到新的计算模型中将提高对调节小动脉模式形成基因电路的理解。 与三名研究人员一起工作的这一集中伙伴关系以前为此带来了一套独特的补充工具来解决这个问题。 第1年的里程碑是要获得转基因小鼠胚胎组织中收缩细胞募集的第一个微血管映射,以通过在成人窗室中应用焦点生长因子的应用来实施小动脉模式形成的空间指导,并实施一种新型的动脉化计算模型,该模型代表平滑肌细胞和纤维细胞的空间化。 长期目标是定义控制动脉模式形成的机制,并为在体内在天然环境中起作用的强大治疗性血管化程序提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS C SKALAK其他文献
THOMAS C SKALAK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS C SKALAK', 18)}}的其他基金
ARTERIOLAR ADAPTATION TO HEMODYNAMIC STRESSES IN VIVO
小动脉对体内血流动力学压力的适应
- 批准号:
2702247 - 财政年份:1996
- 资助金额:
$ 72.5万 - 项目类别:
相似国自然基金
Nrf1/2调控ACER2介导的SphK-S1P-S1PR通路在肝癌血管生成中的机制研究
- 批准号:82302988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结合诱导纤维生成肽长效抑制角膜新生血管形成治疗角膜病的机制
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
基于Parkin介导HIF-1α泛素化调控血管内皮细胞糖酵解探讨祛湿通脉法抑制RA滑膜血管翳生成的机制研究
- 批准号:82305109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
UBR1通过泛素化修饰PTEN调控PI3K/AKT/mTOR促进甲状腺相关眼病血管生成的研究
- 批准号:82360213
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微针递送装载VEGF/PDGF-BB基因的腺相关病毒促进烟雾病高龄小鼠颞肌贴敷术后侧支血管生成的研究
- 批准号:82301480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目