Imperial College Astrophysics Consolidated Grant 2019 - 2022
帝国理工学院天体物理学综合补助金 2019 - 2022
基本信息
- 批准号:ST/S000372/1
- 负责人:
- 金额:$ 194.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our research in Astrophysics includes the areas of cosmology (thestudy of the Universe), the most distant galaxies, exoplanets (planetsaround other stars), and gravitational waves (distortion of space-timepredicted by Einstein, and recently observed for the first time). Thiswork will make a contribution towards answering some of the greatestquestions that can be posed, including: can we find signs of lifeoutside the solar system? and what is the fate of the Universe? Ourwork involves a combination of theory, observations, and laboratory work. We usecutting-edge facilities such as the Planck and Herschel satellites,and in the future the Euclid satellite, the Square Kilometre Array,and the Large Synoptic Survey Telescope. We also develop thetheory that will lead to proposals for the development of the nextgeneration of satellites and experiments. In addition we measure inthe laboratory fundamental properties of different atoms, forcomparison against observations of the different elements in stars.Our understanding of the nature of the Universe has changed profoundlyover the past 20 years, since it was discovered that the expansion ofthe Universe is accelerating, and as experiments, primarily thoseobserving the cosmic microwave background, have allowed the accuratemeasurement of the parameters describing the Universe - theproportions of ordinary matter (atoms), dark matter, and dark energy,and the current rate of expansion. Dark matter clumps gravitationallyand outweighs ordinary matter by a factor 5, but what it consists ofis unknown. The even greater mystery is dark energy, which is causingthe acceleration of the Universe, and which dominates the mass-energybudget. Our work in cosmology takes different approaches to answeringthese problems. But the common theme in our research is theunderstanding that advances will come through improved experimentsthat measure quantities (cosmological distances, the rate ofexpansion) more accurately. The experiments rely on better technology(e.g. measurements of polarisation of the cosmic microwavebackground), better understanding of the physics under study (theproperties of supernovae used to measure cosmological distances), andbetter data analysis techniques that improve the precision andaccuracy of the results.No less profound for humankind has been the discovery, again over thepast 20 years, of planets around many of the nearest stars in ourgalaxy, and the first characterisation of other stellar systems. Ifthe ultimate goal is to discover life on other planets this will beachieved through successive advances in understanding how differenttypes of planet (rocky/gaseous, large/small) form around differenttypes of star (old/young, active/inactive, hot/cool) at differentradial separations, and of how the star over its lifetime can affectthe conditions on its planets. Our work in this area includestheoretical work to understand the mechanisms by which planets form,as well as developing a deeper understanding of stellar variabilityand how this can subtly bias measurements of the atmospheres ofplanets (possibly leading to erroneous conclusions).A consequence of Einstein's 1915 theory of general relativity, whichdescribes the curvature of space-time due to mass, is that massiveobjects undergoing acceleration radiate energy in the form ofgravitational waves, propagatingat the speed of light. After decades of development work, toimprove the sensitivity of the instruments, gravitational waves werefinally detected in September 2015 by the Advanced LIGO consortium.This discovery opens up an entirely new way of exploring the universe,offering rich new possibilities. Our interest in this field is inthinking ahead, by developing the theory of what might be detectable,to anticipate how to interpret new measurements, and to guide thedevelopment of the next generation of instruments.
我们在天体物理学方面的研究包括宇宙学(宇宙的研究)、最遥远的星系、系外行星(其他恒星周围的行星)和引力波(爱因斯坦预测的时空扭曲,最近首次观测到)领域。这项工作将有助于回答一些可能提出的最重大的问题,包括:我们能在太阳系外找到生命的迹象吗?宇宙的命运是什么?我们的工作涉及理论、观察和实验室工作的结合。我们使用最先进的设施,例如普朗克卫星和赫歇尔卫星,以及未来的欧几里得卫星、平方公里阵列和大型综合巡天望远镜。我们还开发了理论,为下一代卫星和实验的开发提出建议。此外,我们在实验室中测量不同原子的基本特性,以便与对恒星中不同元素的观测进行比较。自从发现宇宙正在加速膨胀以来,我们对宇宙本质的理解在过去 20 年里发生了深刻的变化,作为实验,主要是观测宇宙微波背景的实验,已经允许精确测量描述宇宙的参数——普通物质(原子)、暗物质和暗能量的比例,以及当前的膨胀率。暗物质在引力作用下结块,比普通物质重五倍,但它的成分尚不清楚。更大的谜团是暗能量,它导致宇宙加速,并主导着质能预算。我们在宇宙学方面的工作采用不同的方法来回答这些问题。但我们研究的共同主题是认识到进步将通过改进实验来实现,这些实验可以更准确地测量数量(宇宙距离、膨胀率)。这些实验依赖于更好的技术(例如宇宙微波背景偏振的测量)、对所研究物理的更好理解(用于测量宇宙距离的超新星的特性)以及更好的数据分析技术,以提高结果的精度和准确度。对人类来说意义深远的是,在过去的 20 年里,我们再次发现了银河系中许多最近的恒星周围的行星,并首次描述了其他恒星系统的特征。如果最终目标是发现其他行星上的生命,这将通过不断进步来实现,即了解不同类型的行星(岩石/气态、大/小)如何在不同类型的恒星(老/年轻、活跃/不活跃、热/冷)周围形成。不同的径向分离,以及恒星在其一生中如何影响其行星上的条件。我们在这一领域的工作包括理解行星形成机制的理论工作,以及对恒星变率的更深入理解,以及这如何巧妙地使行星大气的测量产生偏差(可能导致错误的结论)。爱因斯坦 1915 年理论的结果广义相对论描述了由于质量引起的时空弯曲,即经历加速的大质量物体以引力波的形式辐射能量,以引力波的速度传播。光速。经过数十年的研制工作,为了提高仪器的灵敏度,先进LIGO联盟终于在2015年9月探测到了引力波。这一发现开辟了探索宇宙的全新途径,提供了丰富的新可能性。我们对该领域的兴趣在于超前思考,通过发展可检测物质的理论,预测如何解释新的测量结果,并指导下一代仪器的开发。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New Ritz wavelengths and transition probabilities for parity-forbidden, singly ionized nickel [Ni ii ] lines of astrophysical interest
天体物理学感兴趣的宇称禁止单电离镍 [Ni ii ] 谱线的新里兹波长和跃迁概率
- DOI:http://dx.10.1093/mnras/stac3739
- 发表时间:2023
- 期刊:
- 影响因子:4.8
- 作者:Clear C
- 通讯作者:Clear C
A complete search for redshift z ? 6.5 quasars in the VIKING survey
完整搜索 redshift z ?
- DOI:http://dx.10.1093/mnras/staa3808
- 发表时间:2021
- 期刊:
- 影响因子:4.8
- 作者:Barnett R
- 通讯作者:Barnett R
Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of $$^{136}$$Xe
达尔文天文台对 $$^{136}$$Xe 无中微子双贝塔衰变的敏感性
- DOI:http://dx.10.1140/epjc/s10052-020-8196-z
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Agostini F
- 通讯作者:Agostini F
Opacity distribution functions for stellar spectra synthesis
恒星光谱合成的不透明度分布函数
- DOI:http://dx.10.1051/0004-6361/201935723
- 发表时间:2019
- 期刊:
- 影响因子:6.5
- 作者:Cernetic M
- 通讯作者:Cernetic M
A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope
蜘蛛气球望远镜首次飞行对原初B模的约束
- DOI:10.3847/1538-4357/ac20df
- 发表时间:2021-03-24
- 期刊:
- 影响因子:0
- 作者:S. C. P. A. R. Ade;M. Amiri;S. Benton;A. Bergman;R. Bihary;J. Bock;J. Bond;J. A. Bonetti;S. Bryan;H. Chiang;C. Contaldi;O. Dor'e;A. Duivenvoorden;H. Eriksen;M. Farhang;J. Filippini;A. Fraisse;K. Freese;M. Galloway;A. Gambrel;N. G;ilo;ilo;K. Ganga;R. Gualtieri;J. Gudmundsson;M. Halpern;J. Hartley;M. Hasselfield;G. Hilton;W. Holmes;V. Hristov;Z. Huang;K. Irwin;W. Jones;A. Karakci;C. Kuo;Z. Kermish;J. S. Leung;S. Li;D. Mak;P. Mason;K. Megerian;L. Moncelsi;T. Morford;J. Nagy;C. Netterfield;M. Nolta;R. O’Brient;B. Osherson;I. Padilla;B. Racine;A. Rahlin;C. Reintsema;J. Ruhl;M. Runyan;T. M. Ruud;J. Shariff;E. C. Shaw;C. Shiu;J. Soler;X. Song;A. Trangsrud;C. Tucker;R. Tucker;A. Turner;J. V. D. List;A. Weber;I. Wehus;S. Wen;D. Wiebe;E. Young
- 通讯作者:E. Young
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jaffe其他文献
Andrew Jaffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jaffe', 18)}}的其他基金
SO:UK - A major UK contribution to Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
- 批准号:
ST/X006328/1 - 财政年份:2023
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
SO:UK - A major UK contribution to the Simons Observatory
SO:UK - 英国对西蒙斯天文台的重大贡献
- 批准号:
ST/W002906/1 - 财政年份:2022
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Imperial College Astrophysics: Consolidated Grant 2012-2014
帝国理工学院天体物理学:综合补助金 2012-2014
- 批准号:
ST/J001368/1 - 财政年份:2012
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Extragalactic Astrophysics and Cosmology at Imperial College London
伦敦帝国理工学院河外天体物理学和宇宙学
- 批准号:
ST/G001901/1 - 财政年份:2009
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Continuing Planck Surveyor LPAC Support
持续 Planck Surveyor LPAC 支持
- 批准号:
ST/F01239X/1 - 财政年份:2007
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
KDI: Computational Challenges in Cosmology
KDI:宇宙学的计算挑战
- 批准号:
9872979 - 财政年份:1998
- 资助金额:
$ 194.83万 - 项目类别:
Continuing Grant
相似国自然基金
基于微博的大学生自杀风险评估方法关键技术研究
- 批准号:62306039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于机器学习的大学生自杀风险识别研究
- 批准号:32300917
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大学生价值观引导的智能算法分发信息服务方法与机制研究
- 批准号:72304090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
心理危机预警大学生园艺疗法方案制定关键问题研究
- 批准号:32301661
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大学生心理健康状况交互式感知方法研究
- 批准号:62302252
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Imperial College Astrophysics Consolidated Grant 2016-2019
帝国理工学院天体物理学综合补助金 2016-2019
- 批准号:
ST/N000838/1 - 财政年份:2016
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Imperial College Astrophysics & Space Physics Consolidated Grant April 2013 - March 2016
帝国理工学院天体物理学
- 批准号:
ST/K001051/1 - 财政年份:2013
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Imperial College Astrophysics PATT Linked Grant
帝国理工学院天体物理学 PATT 关联资助
- 批准号:
ST/L001314/1 - 财政年份:2013
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Imperial College Astrophysics: Consolidated Grant 2012-2014
帝国理工学院天体物理学:综合补助金 2012-2014
- 批准号:
ST/J001368/1 - 财政年份:2012
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant
Imperial College Astrophysics PATT Linked Grant
帝国理工学院天体物理学 PATT 关联资助
- 批准号:
ST/I005765/1 - 财政年份:2011
- 资助金额:
$ 194.83万 - 项目类别:
Research Grant