Space and planetary physics 2022-2025

空间和行星物理学 2022-2025

基本信息

  • 批准号:
    ST/W001071/1
  • 负责人:
  • 金额:
    $ 245.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

We will undertake a broad programme of work studying the Sun, interplanetary space and several of the planets and moons in our Solar System. We choose projects that address some of the most fundamental processes that exist in space: as a result, many aspects of our work can be applied to other solar systems, or other space environments throughout the Universe. We also study aspects of interplanetary space that will ultimately help us better predict conditions there, and especially those near the Earth, where they can harm astronauts and damage satellites and even electrical systems on the ground. In this way, we help to predict such "space weather" and improve society at large. Space is filled with small amounts of charged particles, called a plasma, along with magnetic and electric fields. One fundamental process that occurs in space plasmas is magnetic reconnection, which occurs on very small scales but releases magnetic energy and accelerates particles on large scales. We will study spacecraft measurements of reconnection and determine how energy is converted and transported around reconnection sites.At the very large scale, coronal mass ejections are released from the Sun and can cause space weather effects when they arrive near the Earth. We will use measurements from many spacecraft to study how these structures evolve as they travel through the solar system to better understand the space weather risk.We will use the same set of spacecraft, some of which travel very close to the Sun, to study small scale structures in the solar wind plasma that flows away from it. These "switchbacks" carry energy into space, but their source on the Sun is unknown.We will also analyse some of the very smallest scales in the solar wind, over which protons gyrate around the magnetic field, and simulate their behaviour in order to understand how the distribution of particles evolves as the they travel away from the Sun.We are also interested in the environment around planets and moons in the solar system. Ganymede is a moon of Jupiter, the largest planet in the solar system. Ganymede is a high priority science target because it is the only moon known to have a magnetic field and one of very few to probably have a subsurface ocean. It interacts with Jupiter's plasma and magnetic field and we will develop an advanced model to simulate this interaction.The closest planet to the Sun, Mercury, also has a magnetic field and as it interacts with the solar wind flowing past, many waves are generated. We will study how these waves can accelerate particles around the planet.We have a long history of studying the gas giant planets of the outer solar system. At Saturn, we will study waves high in its atmosphere; such waves also exist at the Earth and by studying those at Saturn, we will learn about the global circulation of Saturn's atmosphere and how it couples into space around the planet.Finally, we will improve the way that we can run computer simulations of space around the outer planets. Working with modellers we will use our theoretical knowledge to include several key physical effects into the models so that we can improve their quality and predictive power.
我们将开展广泛的工作计划,研究太阳、行星际空间以及太阳系中的一些行星和卫星。我们选择的项目能够解决太空中存在的一些最基本的过程:因此,我们工作的许多方面都可以应用于其他太阳系或整个宇宙的其他空间环境。我们还研究行星际空间的各个方面,这最终将帮助我们更好地预测那里的情况,特别是那些靠近地球的情况,在那里它们可能会伤害宇航员并损坏卫星甚至地面的电力系统。通过这种方式,我们可以帮助预测这种“太空天气”并改善整个社会。太空中充满了少量的带电粒子(称为等离子体)以及磁场和电场。空间等离子体中发生的一个基本过程是磁重联,它发生在非常小的尺度上,但在大尺度上释放磁能并加速粒子。我们将研究航天器对重联的测量,并确定能量如何在重联点周围转换和传输。 在非常大的范围内,日冕物质抛射从太阳释放出来,当它们到达地球附近时可能会引起太空天气效应。我们将使用许多航天器的测量来研究这些结构在穿过太阳系时如何演化,以更好地了解太空天气风险。我们将使用同一组航天器,其中一些航天器距离太阳非常近,以研究小型航天器远离它的太阳风等离子体中的尺度结构。这些“之字形”将能量带入太空,但它们在太阳上的来源尚不清楚。我们还将分析太阳风中一些最小的尺度(质子在这些尺度上围绕磁场旋转),并模拟它们的行为,以便了解当粒子远离太阳时,它们的分布如何演变。我们也对太阳系中行星和卫星周围的环境感兴趣。木卫三是太阳系最大行星木星的卫星。木卫三是一个高度优先的科学目标,因为它是已知唯一具有磁场的卫星,也是极少数可能拥有地下海洋的卫星之一。它与木星的等离子体和磁场相互作用,我们将开发一个先进的模型来模拟这种相互作用。距离太阳最近的行星水星也有磁场,当它与流过的太阳风相互作用时,会产生许多波。我们将研究这些波如何加速行星周围的粒子。我们在研究外太阳系的气态巨行星方面有着悠久的历史。在土星,我们将研究其大气层高处的波;这种波也存在于地球上,通过研究土星上的这些波,我们将了解土星大气层的全球环流以及它如何耦合到地球周围的空间。最后,我们将改进对周围空间进行计算机模拟的方式外行星。我们将与建模者合作,利用我们的理论知识将几个关键的物理效应纳入模型中,以便提高模型的质量和预测能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observational Evidence of S-web Source of the Slow Solar Wind
  • DOI:
    10.3847/1538-4357/acc653
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Baker;P. Démoulin;S. Yardley;T. Mihailescu;L. Driel-Gesztelyi;R. D’Amicis;D. Long;A. To;C. Owen;T. Horbury;D. Brooks;D. Perrone;R. French;A. James;M. Janvier;S. Matthews;M. Stangalini;G. Valori;P. Smith;R. A. Cuadrado;H. Peter;U. Schuehle;L. Harra;Krzysztof Barczynski;D. Berghmans;A. Zhukov;L. Rodriguez;C. Verbeeck
  • 通讯作者:
    D. Baker;P. Démoulin;S. Yardley;T. Mihailescu;L. Driel-Gesztelyi;R. D’Amicis;D. Long;A. To;C. Owen;T. Horbury;D. Brooks;D. Perrone;R. French;A. James;M. Janvier;S. Matthews;M. Stangalini;G. Valori;P. Smith;R. A. Cuadrado;H. Peter;U. Schuehle;L. Harra;Krzysztof Barczynski;D. Berghmans;A. Zhukov;L. Rodriguez;C. Verbeeck
Ionospheric environment of Ganymede during the Galileo flybys
伽利略飞越期间木卫三的电离层环境
  • DOI:
    10.5194/egusphere-egu24-11772
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beth A
  • 通讯作者:
    Beth A
In Situ Signature of Cyclotron Resonant Heating in the Solar Wind.
  • DOI:
    10.1103/physrevlett.129.165101
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    T. Bowen;B. Chandran;J. Squire;S. Bale;D. Duan;Kristopher G. Klein;D. Larson;A. Mallet;
  • 通讯作者:
    T. Bowen;B. Chandran;J. Squire;S. Bale;D. Duan;Kristopher G. Klein;D. Larson;A. Mallet;
Flux Rope Merging and the Structure of Switchbacks in the Solar Wind
  • DOI:
    10.3847/1538-4357/ac4016
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Agapitov;J. Drake;M. Swisdak;S. Bale;T. Horbury;J. Kasper;R. Macdowall;F. Mozer;T. Phan;M. Pulupa;N. Raouafi;M. Velli
  • 通讯作者:
    O. Agapitov;J. Drake;M. Swisdak;S. Bale;T. Horbury;J. Kasper;R. Macdowall;F. Mozer;T. Phan;M. Pulupa;N. Raouafi;M. Velli
Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe.
  • DOI:
    10.1007/s11214-022-00943-x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Brandt, P. C.;Provornikova, E.;Bale, S. D.;Cocoros, A.;DeMajistre, R.;Dialynas, K.;Elliott, H. A.;Eriksson, S.;Fields, B.;Galli, A.;Hill, M. E.;Horanyi, M.;Horbury, T.;Hunziker, S.;Kollmann, P.;Kinnison, J.;Fountain, G.;Krimigis, S. M.;Kurth, W. S.;Linsky, J.;Lisse, C. M.;Mandt, K. E.;Magnes, W.;McNutt, R. L.;Miller, J.;Moebius, E.;Mostafavi, P.;Opher, M.;Paxton, L.;Plaschke, F.;Poppe, A. R.;Roelof, E. C.;Runyon, K.;Redfield, S.;Schwadron, N.;Sterken, V.;Swaczyna, P.;Szalay, J.;Turner, D.;Vannier, H.;Wimmer-Schweingruber, R.;Wurz, P.;Zirnstein, E. J.
  • 通讯作者:
    Zirnstein, E. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Horbury其他文献

Timothy Horbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Horbury', 18)}}的其他基金

Enabling stepwise transformation of low TRL space magnetometry
实现低 TRL 空间磁力测量的逐步转换
  • 批准号:
    ST/X005003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
Space and planetary physics 2019-2022
空间和行星物理学 2019-2022
  • 批准号:
    ST/S000364/1
  • 财政年份:
    2019
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
Space and planetary physics
空间和行星物理学
  • 批准号:
    ST/N000692/1
  • 财政年份:
    2016
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
Solar Orbiter magnetometer - thermal and management, March 2009-April 2010
太阳轨道磁力计 - 热和管理,2009 年 3 月至 2010 年 4 月
  • 批准号:
    ST/H000941/1
  • 财政年份:
    2009
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant

相似国自然基金

基于白谱法构建的行星际扰动指数物理意义及其应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用毫米波光谱研究富碳原行星状星云CRL2688的物理和化学特性
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
气态巨行星的起源—原行星盘物理化学特征与行星形成的联系
  • 批准号:
    11703075
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
近地小行星基本物理参数的观测与研究
  • 批准号:
    11673063
  • 批准年份:
    2016
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
吸积在近邻恒星和行星系统的形成和演化中的重要性
  • 批准号:
    11473005
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Space and planetary physics 2019-2022
空间和行星物理学 2019-2022
  • 批准号:
    ST/S000364/1
  • 财政年份:
    2019
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
The physics of planetary creation with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜研究行星形成的物理学
  • 批准号:
    DP180103408
  • 财政年份:
    2018
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Discovery Projects
Space and planetary physics
空间和行星物理学
  • 批准号:
    ST/N000692/1
  • 财政年份:
    2016
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
Computational Modeling Applications in Cardiopulmonary Dynamics
心肺动力学中的计算建模应用
  • 批准号:
    7251792
  • 财政年份:
    2007
  • 资助金额:
    $ 245.03万
  • 项目类别:
A Rolling Programme in Space and Planetary Physics
空间和行星物理学滚动计划
  • 批准号:
    PP/E001076/1
  • 财政年份:
    2007
  • 资助金额:
    $ 245.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了