Unlocking the mysteries of the neutrino and its mass through the nucleus

通过原子核解开中微子及其质量的奥秘

基本信息

  • 批准号:
    ST/V003631/1
  • 负责人:
  • 金额:
    $ 69.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Neutrinos are everywhere! The most abundant massive particles in the universe, they come from all sorts of places: the Sun, the Earth, and outer space. Trillions of them pass harmlessly through our bodies every second. However, they are extremely hard to detect, meaning that neutrinos remain some of the most mysterious particles in the universe - and the only ones whose behaviour can't be fully explained by the Standard Model, the complicated equation describing all the fundamental particles in the universe.Because they are electrically neutral, neutrinos are invisible to particle detectors, which are sensitive to electric charge. We can only detect them when they interact with matter, and produce their charged partners - particles like electrons - with one of three "flavours". Neutrinos are predicted to have zero mass - like photons, the particles of light - but we now know that they have (tiny) masses and that they "oscillate", changing flavour in flight. This raises questions - what are their masses and how do they correspond to the flavours, how do they acquire mass, and do neutrinos and their antiparticles behave differently?Experiments investigating these questions use many different approaches, typically involving huge particle detectors, built deep underground. However, they all face a common challenge: interpreting their measurements requires understanding how neutrinos interact with atomic nuclei. This is extremely complicated, depending on subtleties of nuclear structure and myriad interaction mechanisms that mimic each other in detectors. Nevertheless, without better interaction models, next-generation neutrino experiments will not be able to achieve the precision they need to make new physics discoveries.This fellowship proposes a novel, integrated approach, studying how nuclear effects manifest in different experiment types. We'll use data from SuperNEMO, located under the French Alps and seeking the rare neutrinoless double-beta decay, a never-observed process that could help explain our matter-dominated universe. We'll add precision electron-scattering measurements from CLAS, at Jefferson Lab in Virginia; and use neutrino-scattering data from SBND, a liquid-argon-based detector at Fermilab in Illinois, to test and improve nuclear models. We'll implement them for DUNE, a next-generation oscillation experiment with huge investment from the UK and beyond, which will study a beam of neutrinos travelling from Fermilab to the SURF lab, in a former gold mine in South Dakota. With a unique background studying both neutrino interactions and neutrinoless double-beta decay, this fellowship will give me the chance to bring all of these ideas, data and opportunities together, and bring us closer to understanding the mystery of the neutrino and its mass.
中微子无处不在!它们是宇宙中最丰富的大质量粒子,来自各个地方:太阳、地球和外太空。每秒有数万亿个细菌无害地穿过我们的身体。然而,它们极难探测到,这意味着中微子仍然是宇宙中最神秘的粒子,也是唯一一种其行为无法用标准模型完全解释的粒子,标准模型是描述宇宙中所有基本粒子的复杂方程。由于中微子是电中性的,因此对电荷敏感的粒子探测器是看不见的。只有当它们与物质相互作用并产生具有三种“味道”之一的带电伴侣(例如电子等粒子)时,我们才能检测到它们。预计中微子的质量为零,就像光子、光粒子一样,但我们现在知道它们具有(微小的)质量,并且它们会“振荡”,在飞行中改变味道。这就提出了一些问题——它们的质量是多少,它们如何与味道相对应,它们如何获得质量,中微子及其反粒子的行为是否不同?研究这些问题的实验使用了许多不同的方法,通常涉及建立在地下深处的巨大粒子探测器。然而,它们都面临着一个共同的挑战:解释它们的测量结果需要了解中微子如何与原子核相互作用。这是极其复杂的,取决于核结构的微妙性和探测器中相互模仿的无数相互作用机制。然而,如果没有更好的相互作用模型,下一代中微子实验将无法达到新物理发现所需的精度。该奖学金提出了一种新颖的综合方法,研究核效应在不同实验类型中的表现。我们将使用位于法国阿尔卑斯山下的 SuperNEMO 的数据来寻找罕见的无中微子双贝塔衰变,这是一个从未被观察到的过程,可以帮助解释我们以物质为主的宇宙。我们将添加来自弗吉尼亚州杰斐逊实验室 CLAS 的精确电子散射测量;并使用伊利诺伊州费米实验室液氩探测器 SBND 的中微子散射数据来测试和改进核模型。我们将在 DUNE 中实施它们,这是一项由英国及其他国家投入巨资的下一代振荡实验,该实验将研究从费米实验室传输到位于南达科他州一座前金矿的 SURF 实验室的中微子束。凭借研究中微子相互作用和无中微子双贝塔衰变的独特背景,这项奖学金将使我有机会将所有这些想法、数据和机会结合在一起,让我们更进一步了解中微子及其质量的奥秘。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Status of SuperNEMO and Analysis of First Data
SuperNEMO现状及第一批数据分析
  • DOI:
    10.22323/1.441.0217
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick C
  • 通讯作者:
    Patrick C
Measurement of the double-$$\varvec{\beta }$$ decay of $$\varvec{^{150}}$$Nd to the 0$$\varvec{^+_1}$$ excited state of $$\varvec{^{150}}$$Sm in NEMO-3
测量 $$varvec{^{150}}$$Nd 到 $$varvec 的 0$$varvec{^ _1}$$ 激发态的双 $$varvec{eta }$$ 衰减
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheryl Patrick其他文献

819: PILOT RCT OF EARLY VERSUS USUAL CARE REHABILITATION IN PEDIATRIC NEUROCRITICAL CARE
819:儿科神经危重症护理中早期康复与常规护理康复的试点随机对照试验
  • DOI:
    10.1097/01.ccm.0000528828.59765.02
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    E. Fink;S. Beers;A. Houtrow;R. Richichi;Cheryl Burns;L. Doughty;R. Ortiz;Cynthia A Valenta;Amy Zhou;L. Benken;Kelli Krallman;Pamela Rubin;M. Stanger;M. Orringer;Michelle E. Kiger;Cheryl Patrick;Dahlia Klepac;Dorothy Pollon;Craig M. Smith;P. Kochanek
  • 通讯作者:
    P. Kochanek
Status of SuperNEMO, and analysis of our first data
SuperNEMO 的现状以及我们的第一批数据的分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheryl Patrick
  • 通讯作者:
    Cheryl Patrick

Cheryl Patrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

不同温度下物种谱系距离对生物入侵的影响:达尔文归化谜团的微宇宙实验研究
  • 批准号:
    31971553
  • 批准年份:
    2019
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Project Title Unraveling the Mysteries of ER-phagy: Exploring the Intricate Pathways of ER Stress-Induced ER-phagy
项目名称 揭开内质网自噬之谜:探索内质网应激诱导内质网自噬的复杂途径
  • 批准号:
    2876792
  • 财政年份:
    2023
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Studentship
Revealing the mysteries of heavy-quark exotics from QCD
从 QCD 揭开奇异重夸克的神秘面纱
  • 批准号:
    23H05439
  • 财政年份:
    2023
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
A Long Path to Power: combining bioengineering, stem cells and cell biology to uncover the mysteries of axonal biology
权力之路漫漫:结合生物工程、干细胞和细胞生物学,揭开轴突生物学的奥秘
  • 批准号:
    2723028
  • 财政年份:
    2022
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Studentship
Unravelling The Mysteries Of Giant Star-forming Clumps Using Deep Learning
利用深度学习揭开巨大恒星形成团块的神秘面纱
  • 批准号:
    2739421
  • 财政年份:
    2022
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Studentship
Uncovering the Mysteries of Cannabis: How Trichomes of Cannabis Produce their Unique Metabolites.
揭开大麻的奥秘:大麻毛状体如何产生其独特的代谢物。
  • 批准号:
    RGPIN-2019-04592
  • 财政年份:
    2022
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了