New Applicant Grant: Exploring the connection between solar flare energetic electrons observed at the Sun and in the heliosphere

新申请人资助:探索在太阳和日光层中观察到的太阳耀斑高能电子之间的联系

基本信息

  • 批准号:
    ST/V000764/1
  • 负责人:
  • 金额:
    $ 47.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The Solar Physics Group at Northumbria University has a long-term research programme to understand the physics of our closest star, the Sun, and other solar-like stars. The Sun displays a number of fascinating and dynamic phenomena such as powerful solar flares and giant, planet-sized concentrations of magnetic fields (sunspots). It also provides a unique window that permits us to examine in detail how stars behave. The Sun is made of a plasma (ionised gas) threaded by a strong magnetic field. Such magnetised plasmas are common throughout the Universe (e.g. active galaxy nuclei, nebula, interstellar medium), hence our research also advances our understanding across multiple research communities. Furthermore, we are also keen to determine how the Sun influences the near-Earth environment. The Sun is the powerhouse of our solar system and its daily variability can have profound consequences for Earth. Space Weather is the name given to the impact of events (e.g. solar flares, coronal mass ejections) from the Sun on our technologically- advanced society. This impact is both beautiful (e.g. Northern lights) and potentially extremely detrimental (e.g. damaging satellites, increasing radiation that is harmful to aircrew and astronauts). Thus, in order to understand and address the risks associated with Space Weather, we need to understand its origins and drivers. Our work aims to address one of STFC's Science Challenges, namely "How do stars and planetary systems develop and how do they support the existence of life?", as well as key questions in the STFC Roadmap for Solar System Research, e.g. "What are the structures, dynamics and energetics of the Sun?" and "What are the fundamental processes at work in the Solar System?". The project focuses on solar flares, a key component of space weather, and a laboratory for studying multiple aspects of high energy astrophysics. Solar flares produce radiation at all wavelengths, and unlike other astrophysical objects, there are abundant space and ground-based observatories viewing the Sun from radio to gamma-rays, using spatially resolved, high-resolution imaging and spectroscopy alongside Sun-as-a-star observations. Radiative diagnostics: X-ray bremsstrahlung, UV continuum, atomic line emission, and radio help us diagnose the properties of energetic particles at the Sun, and the extreme flaring plasma conditions. The Sun is the only star that permits in-situ detection of flare-accelerated electrons and ions (multi-messenger astronomy) at Earth (1 AU), and now within the Sun's corona (0.04 AU) with the successful launch of the Parker Solar Probe our "mission to touch the Sun", and the much anticipated ESA/NASA mission Solar Orbiter. The project is interested in understanding the energetics of solar flares and how high energy particles observed at the Sun and in the heliosphere are created in the Sun's atmosphere. This will be achieved by combining a multi-wavelength and multi-messenger observational study and by creating observationally-driven models in different plasma environments at the Sun and in the heliosphere.
诺森比亚大学(Northumbria University)的太阳能物理小组有一项长期研究计划,以了解我们最近的恒星,太阳和其他类似太阳能的恒星的物理学。太阳显示出许多引人入胜且动态的现象,例如强大的太阳耀斑和巨型行星大小的磁场(黑子)。它还提供了一个独特的窗口,允许我们详细检查星星的行为方式。太阳由由强磁场螺纹的等离子体(离子气体)制成。这种磁化的等离子体在整个宇宙中很常见(例如,活跃的星系核,星云,星际培养基),因此我们的研究也在多个研究群落中提高了我们的理解。此外,我们还渴望确定太阳如何影响近地环境。太阳是我们太阳能系统的强大,其日常变异性可能会对地球产生深远的影响。太空天气是从太阳对我们技术先进的社会的影响(例如太阳耀斑,冠状大量弹射)影响的名称。这种影响既美丽(例如北极光),也可能非常有害(例如破坏性卫星,增加对机组人员和宇航员有害的辐射)。因此,为了理解和解决与太空天气相关的风险,我们需要了解其起源和驱动因素。我们的工作旨在应对STFC的科学挑战之一,即“恒星和行星系统如何发展以及它们如何支持生命的存在?”,以及STFC的太阳系研究中的STFC路线图中的关键问题,例如。 “太阳的结构,动力和能量是什么?”和“太阳系中工作的基本过程是什么?”。该项目的重点是太阳耀斑,太空天气的关键组成部分以及研究高能量天体物理学多个方面的实验室。太阳耀斑在所有波长下产生辐射,与其他天体物理物体不同,使用空间分辨,高分辨率的成像和光谱镜和Sun-AS-A-A-AS-A-Star观测值都有丰富的空间和地面观测器,可查看从无线电到伽马射线的太阳。辐射诊断:X射线BREMSSTRAHLUNG,紫外线连续,原子线发射和无线电可帮助我们诊断阳光下能量颗粒的特性以及极端燃烧的等离子体条件。太阳是唯一允许地球(1 au)的耀斑加速电子和离子(多通讯天文学)的恒星,现在在太阳的Corona(0.04 au)内,随着Parker Solar探测我们的“触摸太阳的任务”的帕克太阳能探测器,以及令人期待的ESA/NASA ORBIRE solar Orbiter。该项目有兴趣了解太阳耀斑的能量,以及在太阳和太阳大气中产生的在太阳和地球层中观察到的高能量颗粒。这将通过结合多波长和多门见的观察性研究来实现,并在太阳和地球层中的不同等离子体环境中创建观​​察驱动的模型。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Modelling Investigation for Solar Flare X-ray Stereoscopy with Solar Orbiter/STIX and Earth Orbiting Missions
太阳耀斑 X 射线立体观测与太阳轨道器/STIX 和地球轨道任务的建模研究
  • DOI:
    10.48550/arxiv.2401.16032
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeffrey Natasha L. S.
  • 通讯作者:
    Jeffrey Natasha L. S.
Exploring the Origin of Solar Energetic Electrons. I. Constraining the Properties of the Acceleration Region Plasma Environment
  • DOI:
    10.3847/1538-4357/ad0035
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ross Pallister;N. Jeffrey
  • 通讯作者:
    Ross Pallister;N. Jeffrey
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
太阳耀斑中空间扩展湍流电子加速和传输的光谱和成像诊断
  • DOI:
    10.48550/arxiv.2301.13682
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stores Morgan
  • 通讯作者:
    Stores Morgan
Exploring the Origin of Solar Energetic Electrons I: Constraining the Properties of the Acceleration Region Plasma Environment
探索太阳高能电子的起源一:约束加速区等离子体环境的特性
  • DOI:
    10.48550/arxiv.2310.04229
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pallister R
  • 通讯作者:
    Pallister R
Spectral and Imaging Diagnostics of Spatially Extended Turbulent Electron Acceleration and Transport in Solar Flares
太阳耀斑中空间扩展湍流电子加速和传输的光谱和成像诊断
  • DOI:
    10.3847/1538-4357/acb7dc
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stores M
  • 通讯作者:
    Stores M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasha Jeffrey其他文献

Natasha Jeffrey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Gravitational-wave Consolidator Grant New Applicant: Royal Holloway
引力波固结器授予新申请人:皇家霍洛威学院
  • 批准号:
    ST/X001806/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.46万
  • 项目类别:
    Research Grant
New Applicant Scheme Consolidated Grant Application in Solar System Studies- Towards the Solar System's Edge: Exploring the Inner Oort Cloud
新申请人计划太阳系研究综合拨款申请-走向太阳系边缘:探索内部奥尔特云
  • 批准号:
    ST/V000691/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.46万
  • 项目类别:
    Research Grant
Consolidated Grant New Applicant Scheme (The study of elementary particles and their interactions - ST/N000242/1)
综合拨款新申请人计划(基本粒子及其相互作用的研究 - ST/N000242/1)
  • 批准号:
    ST/P00377X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.46万
  • 项目类别:
    Research Grant
Acquisition of a Cryoprobe for a 600 MHz NMR Spectrometer
获取用于 600 MHz NMR 波谱仪的冷冻探针
  • 批准号:
    8639823
  • 财政年份:
    2014
  • 资助金额:
    $ 47.46万
  • 项目类别:
New Applicant Grant
新申请人补助金
  • 批准号:
    ST/M004236/1
  • 财政年份:
    2014
  • 资助金额:
    $ 47.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了