Experimental Particle Physics at the University of Edinburgh

爱丁堡大学实验粒子物理

基本信息

  • 批准号:
    ST/S000828/1
  • 负责人:
  • 金额:
    $ 310.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Edinburgh Experimental Particle Physics group is currently working in three different running experiments and we are also working on several future projects.The ATLAS experiment at the Large Hadron Collider (LHC): ATLAS is one of two detectors able to study a wide variety of particles created from the collision of protons at the highest energies ever created, and it addresses fundamental questions. The most well known is that of the origin of mass. The beautiful symmetry which underlies our understanding of particle interactions inherently demands that all particles are massless. This cannot be the case, and the elegant solution put forward is now known as the Higgs mechanism. The discovery of the Higgs boson has verified this, and now we must measure its properties in great detail. Another area addressed by ATLAS is the search for new heavy particles such as new heavy Higgs like particles or supersymmetric particles, which are predicted in models trying to address shortcomings of the Standard Model, such as why their is dark matter.The LHCb experiment at the LHC. Prior to the 1960s, it had been thought that matter and anti-matter would behave in the same way. However, it was discovered that this symmetry was violated, and that matter does not behave in an identical way to anti-matter. This is embodied in the phenomenon of CP violation and is essential to the understanding of the early universe. Shortly after the big bang there were equal amounts of matter and anti-matter. During expansion and cooling, matter and anti-matter would have annihilated into photons to leave a universe full of radiation, but no stars and galaxies. It was shown in 1967 by Sakarov that if three conditions, including CP violation, were met, then it would be possible for a small imbalance of matter over anti-matter to accrue, which would be sufficient to explain the existence of the universe. LHCb measures differences (CP violation) in behaviour of particles and antiparticle with at least one b or anti-b quark and searches for very rare decays of these particles, which could be affected by heavy unobserved particles. The LUX experiment, which is the current world-leading apparatus searching for dark matter. It is well known that some 27% of the Universe is comprised of Dark Matter - that is matter of some form which does not interact in a way which produces radiation, or other easy to observe signatures. There are many theoretical candidates and resolution of this mystery must include the direct detection of our own galactic dark matter. Thermal production of Weakly Interacting Massive Particles in the early universe naturally results in the correct dark matter abundance today, and most supersymmetry models mentioned earlier contain such particles. Many other well-motivated theories also invoke particles that may be searched for. We are also working hard on the design, development and construction of the upgraded detectors at the LHC for around 2020. The intensity of the beams will be increased and the data rates recorded by the detectors will increase by orders of magnitude. This requires building new detectors for precisely measuring trajectories of longlived particles, for measuring Cherenkov photons to determine their speed, and faster and more powerful simulation, and new ways to handle the massive data rates. We are also constructing and operating the LUX-ZEPLIN project, expected to dominate direct searches for dark matter in the next decade. We work on simulations, control systems for the 10 tonnes of liquid xenon, and analysis.We have recently started an activity neutrino physics by joining both the DUNE and Hyper-K experiments to be constructed. One of the most interesting fact of nature is that there are only three species of neutrinos, which until recently were thought to be massless. It is important to measure precisely the "mixing" between the species and to search for CP violation in neutrinos.
爱丁堡实验粒子物理组目前正在三个不同的运行实验中工作,我们还在研究几个未来的项目。最著名的是质量的起源。我们对粒子相互作用的理解的基础的美丽对称性固有地要求所有粒子无质量。情况并非如此,提出的优雅解决方案现在被称为希格斯机制。希格斯玻色子的发现已经验证了这一点,现在我们必须详细衡量其属性。 Atlas解决的另一个区域是寻找新的重颗粒,例如新的重型希格,例如颗粒或超对称颗粒,这些颗粒是在试图解决标准模型缺点的模型中预测的,例如为什么它们是暗物质。在1960年代之前,人们认为物质和反物质的行为会以相同的方式行为。但是,已经发现这种对称性被侵犯了,而且事物的行为与反物质的行为并不相同。这体现在CP违规现象中,对于对早期宇宙的理解至关重要。大爆炸后不久,物质和反物质都有相等数量。在膨胀和冷却过程中,物质和抗肌肉将被歼灭到光子中,使宇宙充满辐射,但没有恒星和星系。萨卡罗夫(Sakarov)在1967年表明,如果满足包括违反CP的三个条件,那么可能会导致物质不平衡,而抗剂量的累积不平衡,这足以解释宇宙的存在。 LHCB在具有至少一个B或抗B Quark的颗粒和反粒子行为中测量差异(CP违规),并寻找这些颗粒的稀有衰变,这些颗粒可能会受到沉重的未观察到的颗粒的影响。 Lux实验是当前世界领先的设备,正在寻找暗物质。众所周知,大约27%的宇宙由暗物质组成 - 这是某种形式的问题,这些形式不会以产生辐射或其他易于观察的签名的方式相互作用。有许多理论上的候选人,这个谜团的解决方案必须包括直接发现我们自己的银河系暗物质。早期宇宙中弱相互作用的巨大颗粒的热产生自然会导致正确的暗物质丰度,而前面提到的大多数超对称模型都包含此类颗粒。许多其他动机的理论也可以调用可能被搜索的粒子。我们还在2020年左右在LHC升级的检测器的设计,开发和构建。梁的强度将增加,并且检测器记录的数据速率将通过数量级增加。这需要构建新的检测器,以精确测量长期颗粒的轨迹,以测量Cherenkov光子以确定其速度,并更快,更强大的模拟,以及处理大量数据速率的新方法。我们还正在构建和操作Lux-Zeplin项目,预计将在未来十年内直接搜索暗物质。我们在模拟,10吨液体氙气的控制系统以及分析上进行了控制。我们最近通过加入了构建的沙丘和Hyper-K实验来开始一种活动中微子物理学。自然界最有趣的事实之一是,只有三种中微子,直到最近才被认为是无质量的。精确测量物种之间的“混合”并在中微子中寻找违反CP的情况很重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On-line computing challenges: detector and readout requirements
在线计算挑战:探测器和读数要求
  • DOI:
    10.48550/arxiv.2111.04168
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brenner R
  • 通讯作者:
    Brenner R
Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils
  • DOI:
    10.1103/physrevd.104.092009
  • 发表时间:
    2021-11-23
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Akerib, D. S.;Al Musalhi, A. K.;Zarzhitsky, P.
  • 通讯作者:
    Zarzhitsky, P.
Enhancing the sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment to low energy signals
增强 LUX-ZEPLIN (LZ) 暗物质实验对低能量信号的灵敏度
  • DOI:
    10.48550/arxiv.2101.08753
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akerib D
  • 通讯作者:
    Akerib D
First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
  • DOI:
    10.1103/physrevlett.131.041002
  • 发表时间:
    2023-07-28
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Aalbers, J.;Akerib, D. S.;Zuckerman, A.
  • 通讯作者:
    Zuckerman, A.
Cosmogenic production of Ar 37 in the context of the LUX-ZEPLIN experiment
LUX-ZEPLIN 实验背景下 Ar 37 的宇宙生成
  • DOI:
    10.1103/physrevd.105.082004
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Aalbers J
  • 通讯作者:
    Aalbers J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franz Muheim其他文献

Franz Muheim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franz Muheim', 18)}}的其他基金

LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
  • 批准号:
    ST/X006484/1
  • 财政年份:
    2024
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade 2 bridging Oct 2023 - March 2024
LHCb 升级 2 桥接 2023 年 10 月 - 2024 年 3 月
  • 批准号:
    ST/Y005570/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential
LHCb 升级 II:最大化 HL-LHC 发现潜力
  • 批准号:
    ST/V003399/1
  • 财政年份:
    2021
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade II: Maximising HL-LHC Discovery Potential (Bridging Funding)
LHCb 升级 II:最大化 HL-LHC 发现潜力(过渡资金)
  • 批准号:
    ST/V003070/1
  • 财政年份:
    2020
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2017 - 2019
PPGP 资本设备 2017 - 2019
  • 批准号:
    ST/P005810/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
DUNE: Pre-Construction Phase
沙丘:施工前阶段
  • 批准号:
    ST/R000115/1
  • 财政年份:
    2017
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/N000269/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
PPGP Capital Equipment 2015 - 2019
PPGP 资本设备 2015 - 2019
  • 批准号:
    ST/N001257/1
  • 财政年份:
    2015
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Ugrade: Beyond the Energy Frontier
LHCb 升级:超越能源前沿
  • 批准号:
    ST/L003538/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
LHCb Upgrade Bridging Funds Jan-Sept 2014
LHCb 升级过渡基金 2014 年 1 月至 9 月
  • 批准号:
    ST/M00192X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant

相似国自然基金

ATLAS实验上研究希格斯粒子性质和寻找新物理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    900 万元
  • 项目类别:
    国际(地区)合作与交流项目
粒子物理实验抗辐照通用数据传输ASIC研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
面向高能高亮度粒子物理实验的CMOS像素传感器芯片新型高速读出架构关键技术研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
CMS实验希格斯粒子性质研究及新物理寻找
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    900 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

UCL Experimental Particle Physics Responsive PDRA Call (2023-2025)
伦敦大学学院实验粒子物理响应 PDRA 征集(2023-2025)
  • 批准号:
    ST/X005992/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
  • 批准号:
    10750627
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
Experimental Particle Physics with a Focus on Neutrino Physics
以中微子物理为重点的实验粒子物理
  • 批准号:
    2883567
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Studentship
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
  • 批准号:
    10714021
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
Experimental Particle Physics at the University of Edinburgh
爱丁堡大学实验粒子物理
  • 批准号:
    ST/X005984/1
  • 财政年份:
    2023
  • 资助金额:
    $ 310.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了