Nanoflares: Explosive Heating of our Sun's Atmosphere

纳米耀斑:太阳大气的爆炸性加热

基本信息

  • 批准号:
    ST/L002744/1
  • 负责人:
  • 金额:
    $ 35.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The Sun is one of the most important objects for humankind, with solar activity driving "space weather" and having a profound effect on the Earth's environment. We can directly see the effects of the Sun's powerful radiation through fascinating sights on Earth, such as the aurora borealis. However, it is the paradoxical nature of our Sun's temperature structure that continues to frustrate scientists. One of the greatest scientific problems plaguing physicists is the fact that the outer atmosphere of our Sun is much hotter than its surface. Common sense leads us to believe that the local temperature will decrease as we move away from the Sun's 6000 K surface temperature. However, the corona, an atmospheric layer a few thousand km above the surface, radiates with a temperature exceeding one million degrees. Efforts to understand the heating processes responsible have remained at the forefront of observational and theoretical research for over 50 years, producing a popular class of theory known as flare heating. This mechanism suggests that turbulent plasma processes cause the magnetic field lines embedded in the Sun's atmosphere to become twisted and stretched. The process of magnetic reconnection results in these strained field lines returning to a more stable configuration, but releasing huge quantities of energy in the process. A large-scale solar flare can release in excess of 10^25 Joules of energy during a single event; the equivalent of over 5 million times more than the total combined energy of all atomic bombs ever detonated. However, these large events are too rare to support the continuously elevated temperatures in our Sun's outer atmosphere. Instead, it is believed that small-scale flares, or "nanoflares" with an equivalent energy of a single modern atomic bomb, may occur with such regularity that they can provide a continuous basal background heating. It is my desire to help improve our understanding of the physical processes at work within the Sun's atmosphere, an object that is so influential to life on Earth. A natural consequence of understanding the effects of solar flares will be the ability to predict solar activity, something that will ultimately allow us to protect ourselves from fierce outbursts of space weather. To pursue this crucial agenda, we need to observe and model these explosive processes occurring in the Sun's atmosphere on their intrinsic scales. A new breed of highly sensitive scientific cameras will allow for the first time fundamental processes associated with the release of magnetic energy to be studied at an unprecedented level of detail. With an STFC Research Grant, a post-doctoral researcher will employ one of these modern pieces of equipment to image a variety of magnetic structures in the Sun's atmosphere with frame rates approaching 100 per second. The intensities of all structures will be monitored, with the characteristics of small-scale nanoflares evaluated. An in-depth examination of the regions where nanoflare activity is omnipresent will allow the processes at work to be compared precisely to the underlying magnetic field configurations. Fundamental parameters deduced from high-resolution observations will be incorporated into advanced computer simulations. Large computer clusters, often exceeding 200 CPUs, will be used to examine the effects of sub-resolution nanoflare activity on the intensity profiles extracted from the high-resolution observations. A direct comparison between the simulations and the observations will be undertaken, with key nanoflare characteristics determined, including the reconnection rates, the total energy released, and the plasma relaxation time scales. For the first time, the conditions promoting nanoflares will be understood, with the specific role they play in the heating of our Sun's atmosphere evaluated.
太阳是人类最重要的天体之一,太阳活动驱动“太空天气”,并对地球环境产生深远影响。我们可以通过地球上迷人的景象(例如北极光)直接看到太阳强大辐射的影响。然而,太阳温度结构的矛盾性质继续让科学家们感到沮丧。困扰物理学家的最大科学问题之一是太阳的外层大气比其表面热得多。常识让我们相信,当我们远离太阳 6000 K 的表面温度时,局部温度将会降低。然而,日冕是距地表数千公里的大气层,其辐射温度超过百万度。 50多年来,了解加热过程的努力一直处于观测和理论研究的前沿,产生了一种被称为火炬加热的流行理论。这种机制表明,湍流等离子体过程导致嵌入太阳大气中的磁力线变得扭曲和拉伸。磁重联过程导致这些应变磁力线恢复到更稳定的配置,但在此过程中释放了大量能量。大规模太阳耀斑在一次事件中可以释放超过 10^25 焦耳的能量;相当于所有曾经引爆的原子弹总能量的500万倍以上。然而,这些大型事件太罕见,无法支持太阳外层大气温度的持续升高。相反,人们相信,小规模耀斑或“纳米耀斑”的能量相当于单个现代原子弹的能量,可能会定期发生,从而提供连续的基础背景加热。我希望帮助提高我们对太阳大气层物理过程的理解,太阳大气层对地球上的生命影响如此之大。了解太阳耀斑影响的自然结果将是预测太阳活动的能力,这最终将使我们能够保护自己免受剧烈的太空天气爆发的影响。为了实现这一重要议程,我们需要在太阳大气中发生的这些爆炸过程的内在尺度上进行观察和建模。新型高灵敏度科学相机将首次以前所未有的细节水平研究与磁能释放相关的基本过程。凭借 STFC 研究补助金,一名博士后研究员将使用其中一台现代化设备对太阳大气中的各种磁结构进行成像,帧速率接近每秒 100 个。所有结构的强度都将受到监测,并评估小规模纳米耀斑的特征。对纳米耀斑活动无处不在的区域进行深入检查,将使工作过程与底层磁场配置进行精确比较。从高分辨率观测中推导出来的基本参数将被纳入先进的计算机模拟中。通常超过 200 个 CPU 的大型计算机集群将用于检查亚分辨率纳米耀斑活动对从高分辨率观测中提取的强度分布的影响。将进行模拟和观测之间的直接比较,并确定关键的纳米耀斑特征,包括重联率、释放的总能量和等离子体弛豫时间尺度。我们将首次了解促进纳米耀斑的条件,并评估它们在加热太阳大气中所发挥的具体作用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TRACING THE CHROMOSPHERIC AND CORONAL MAGNETIC FIELD WITH AIA, IRIS, IBIS, AND ROSA DATA
利用 AIA、IRIS、IBIS 和 ROSA 数据追踪色球层和日冕磁场
  • DOI:
    http://dx.10.3847/0004-637x/826/1/61
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aschwanden M
  • 通讯作者:
    Aschwanden M
An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers
深入了解具有更高方位角波数的太阳黑子振荡
  • DOI:
    10.3847/1538-4357/aa73d6
  • 发表时间:
    2017-05-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Jess;T. Doorsselaere;G. Verth;V. Fedun;S. K. Prasad;R. Erdélyi;P. Keys;S. Grant;H. Uitenbroek;Damian J. Christian
  • 通讯作者:
    Damian J. Christian
Magnetohydrodynamic Nonlinearities in Sunspot Atmospheres: Chromospheric Detections of Intermediate Shocks
太阳黑子大气中的磁流体动力学非线性:中间激波的色层探测
  • DOI:
    http://dx.10.3847/1538-4357/ab7a90
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Houston S
  • 通讯作者:
    Houston S
Statistical Signatures of Nanoflare Activity. II. A Nanoflare Explanation for Periodic Brightenings in Flare Stars observed by NGTS
纳米耀斑活动的统计特征。
  • DOI:
    http://dx.10.48550/arxiv.2010.04167
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dillon C
  • 通讯作者:
    Dillon C
The Magnetic Response of the Solar Atmosphere to Umbral Flashes
太阳大气对本影闪光的磁响应
  • DOI:
    10.3847/1538-4357/aab366
  • 发表时间:
    2018-02-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. J. Houston;D. Jess;A. A. Ramos;A. A. Ramos;S. Grant;C. Beck;Aimee A. Norton;S. Prasad
  • 通讯作者:
    S. Prasad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jess其他文献

David Jess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jess', 18)}}的其他基金

PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
  • 批准号:
    ST/X005526/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
  • 批准号:
    ST/V00199X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
  • 批准号:
    ST/S001298/1
  • 财政年份:
    2018
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Research Grant
Waves and Flows: Linking the Solar Photosphere to the Corona
波与流:将太阳光球层与日冕联系起来
  • 批准号:
    ST/K004220/1
  • 财政年份:
    2013
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Fellowship
Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution
突破界限:高时空分辨率时代的太阳物理学
  • 批准号:
    ST/G004986/1
  • 财政年份:
    2009
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Fellowship

相似国自然基金

基于微囊技术的TATB-高能炸药可控组装和包覆降感机理研究
  • 批准号:
    52304201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高温和冲击复合作用下PBX炸药损伤与点火反应耦合机理多尺度研究
  • 批准号:
    12372368
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
深水环境下炸药能量输出机理与殉爆行为特性
  • 批准号:
    12302441
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
含能粘结剂在炸药爆轰中的反应机理和增能机制研究
  • 批准号:
    12302432
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高能硝胺炸药螺旋结构构筑及其力学响应机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
  • 批准号:
    MR/Y011767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Fellowship
A phylogenomic approach to reveal the explosive adaptive radiation of wood Sonchus in Canaries
用系统发育学方法揭示加那利群岛木桑属植物的爆炸性适应性辐射
  • 批准号:
    22KF0187
  • 财政年份:
    2023
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Fellowship
Novel tools for dating explosive volcanic eruptions in the critical window
用于确定关键窗口内火山喷发时间的新工具
  • 批准号:
    DP230103085
  • 财政年份:
    2023
  • 资助金额:
    $ 35.38万
  • 项目类别:
    Discovery Projects
Psychophysiological Correlates of Cognitive Bias Modification in Intermittent Explosive Disorder
间歇性爆发性障碍认知偏差修正的心理生理相关性
  • 批准号:
    10677927
  • 财政年份:
    2023
  • 资助金额:
    $ 35.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了