Waves and Flows: Linking the Solar Photosphere to the Corona

波与流:将太阳光球层与日冕联系起来

基本信息

  • 批准号:
    ST/K004220/1
  • 负责人:
  • 金额:
    $ 51.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The Sun is one of the most important objects for humankind, with solar activity driving "space weather" and having a profound effect on the Earth's environment. We can directly see the effects of the Sun's powerful radiation through fascinating sights on Earth, such as the aurora borealis. However, it was the paradoxical nature of our Sun's temperature structure that first captivated my attention. One of the greatest scientific problems plaguing physicists is the fact that the outer atmosphere of our Sun is much hotter than its surface. Common sense leads us to believe that the local temperature will decrease as we move away from the Sun's 6000 K surface temperature. However, the corona, an atmospheric layer a few thousand km above the surface, radiates with a temperature exceeding one million degrees. Efforts to understand the heating processes responsible have remained at the forefront of observational and theoretical research for over 50 years, producing a popular class of theory known as wave heating. This mechanism suggests that waves, generated near the solar surface through the continual churning of plasma, propagate upwards, ultimately dissipating their energy and heating the Sun's outer atmosphere. A good analogy is to envisage ocean waves that travel vast distances across the sea before crashing on to shorelines, ultimately releasing immense quantities of energy in the process. However, the solar atmosphere is highly magnetic in nature. Magnetic field strengths often exceed 0.3 Tesla (similar in strength to modern open MRI scanners found in hospitals), resulting in wave modes becoming highly modified, and producing magneto-hydrodynamic (MHD) phenomena.It is my desire to help improve our understanding of the physical processes at work within the Sun's atmosphere, an object that is so influential to life on Earth. A natural consequence of understanding the effects of solar magnetism will be the ability to predict solar activity, something that will ultimately allow us to protect ourselves from fierce outbursts of space weather. To pursue this crucial agenda, we need to observe and model the processes occurring in the Sun's atmosphere on their intrinsic scales. The UK has recently benefitted from a new breed of high-resolution solar instrumentation, including the Rapid Oscillations in the Solar Atmosphere (ROSA), Solar Dynamics Observatory (SDO), Hinode, and IRIS facilities, which will allow for the first time fundamental processes associated with the release of magnetic energy to be studied at an unprecedented level of detail. As an STFC Fellow, I will use modern ground- and space-based telescopes containing a wide assortment of high-resolution imaging and spectroscopic instrumentation. The observational component of my research will focus on the distinction of individual MHD waves, allowing key characteristics to be evaluated. These include the modes of oscillation (longitudinal, transverse, etc.), velocities, plasma densities, and temperatures, which can be combined to provide detailed energy estimates. The rate at which energy is dissipated will be compared to the heating requirements of the corona, with the exact role waves play in the heating of the Sun's corona unequivocally determined. Fundamental parameters deduced from high-resolution observations will be incorporated into advanced computer simulations. Large computer clusters, with 200+ CPUs, will be used to examine the 3D effects of waves on magnetic fields which intertwine the entire solar atmosphere. Characteristics associated with the waves will be studied in simulated solar structures, with forward modelling techniques implemented to allow direct comparisons with the physical observations to be undertaken, culminating in much refined heating models of the solar atmosphere. With the rapid advancements made in the field of solar physics over the last number of years, the ability to finally resolve the atmospheric heating paradox is now a reality.
太阳是人类最重要的天体之一,太阳活动驱动“太空天气”,并对地球环境产生深远影响。我们可以通过地球上迷人的景象(例如北极光)直接看到太阳强大辐射的影响。然而,正是太阳温度结构的矛盾性质首先引起了我的注意。困扰物理学家的最大科学问题之一是太阳的外层大气比其表面热得多。常识让我们相信,当我们远离太阳 6000 K 的表面温度时,局部温度将会降低。然而,日冕是距地表数千公里的大气层,其辐射温度超过百万度。 50多年来,了解加热过程的努力一直处于观测和理论研究的前沿,产生了一种流行的理论,称为波加热。这种机制表明,通过等离子体的持续搅动在太阳表面附近产生的波向上传播,最终耗散其能量并加热太阳的外层大气。一个很好的类比是,想象海浪在撞击海岸线之前穿过大海传播很长的距离,最终在这个过程中释放出大量的能量。然而,太阳大气本质上具有很强的磁性。磁场强度通常超过 0.3 特斯拉(类似于医院中现代开放式 MRI 扫描仪的强度),导致波模式高度改变,并产生磁流体动力学 (MHD) 现象。我希望帮助提高我们对磁场的理解。太阳大气层中的物理过程对地球上的生命影响如此之大。了解太阳磁效应的自然结果将是预测太阳活动的能力,这最终将使我们能够保护自己免受剧烈的太空天气爆发的影响。为了实现这一重要议程,我们需要在太阳大气层的内在尺度上观察和模拟发生的过程。英国最近受益于新型高分辨率太阳仪器,包括太阳大气快速振荡 (ROSA)、太阳动力学观测站 (SDO)、Hinode 和 IRIS 设施,这些设施将首次允许基本过程与磁能释放相关的研究以前所未有的细节水平进行研究。作为 STFC 研究员,我将使用包含各种高分辨率成像和光谱仪器的现代地面和太空望远镜。我的研究的观察部分将重点关注单个 MHD 波的区别,从而评估关键特征。这些包括振荡模式(纵向、横向等)、速度、等离子体密度和温度,可以将它们组合起来以提供详细的能量估计。能量耗散的速率将与日冕的加热需求进行比较,并明确确定波在太阳日冕加热中所扮演的确切角色。从高分辨率观测中推导出来的基本参数将被纳入先进的计算机模拟中。拥有 200 多个 CPU 的大型计算机集群将用于检查波对缠绕整个太阳大气层的磁场的 3D 影响。将在模拟太阳结构中研究与波相关的特征,并采用正演建模技术,以便与物理观测进行直接比较,最终形成更加精细的太阳大气加热模型。随着过去几年太阳物理学领域的快速进步,最终解决大气加热悖论的能力现已成为现实。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoacoustic wave energy dissipation in the atmosphere of solar pores.
太阳孔隙大气中的磁声波能量耗散。
Characterization of shock wave signatures at millimetre wavelengths from Bifrost simulations.
Bifrost 模拟中毫米波长冲击波特征的表征。
H a AND EUV OBSERVATIONS OF A PARTIAL CME
部分 CME 的 H a 和 EUV 观测
  • DOI:
    http://dx.10.1088/0004-637x/804/2/147
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian D
  • 通讯作者:
    Christian D
HEATING MECHANISMS FOR INTERMITTENT LOOPS IN ACTIVE REGION CORES FROM AIA/ SDO EUV OBSERVATIONS
来自 AIA/SDO EUV 观测的活动区域核心间歇循环的加热机制
  • DOI:
    http://dx.10.1088/0004-637x/795/1/48
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cadavid A
  • 通讯作者:
    Cadavid A
Proper orthogonal and dynamic mode decomposition of sunspot data.
太阳黑子数据的正确正交和动态模式分解。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jess其他文献

David Jess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jess', 18)}}的其他基金

PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
  • 批准号:
    ST/X005526/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
  • 批准号:
    ST/V00199X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
  • 批准号:
    ST/S001298/1
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Research Grant
Nanoflares: Explosive Heating of our Sun's Atmosphere
纳米耀斑:太阳大气的爆炸性加热
  • 批准号:
    ST/L002744/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Research Grant
Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution
突破界限:高时空分辨率时代的太阳物理学
  • 批准号:
    ST/G004986/1
  • 财政年份:
    2009
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Fellowship

相似国自然基金

面向大口径管道流量高精度测量的光纤多参数传感及解耦技术研究
  • 批准号:
    62375045
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
适用于液相色谱的皮升流量计量
  • 批准号:
    22304186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高温高压微细通道换热器的流量分配影响机理与分流方法研究
  • 批准号:
    52376075
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
5G网络流量的时空模式、形成机制及其电信节能应用
  • 批准号:
    42371236
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: What’s salt got to do with it? Linking the variability of mixing to exchange flows in real estuaries
职业:盐与它有什么关系?
  • 批准号:
    2045866
  • 财政年份:
    2021
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Continuing Grant
Linking species to ecosystems: predation-mediated nutrient flows
将物种与生态系统联系起来:捕食介导的营养流
  • 批准号:
    227083-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Discovery Grants Program - Individual
Linking species to ecosystems: predation-mediated nutrient flows
将物种与生态系统联系起来:捕食介导的营养流
  • 批准号:
    227083-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Discovery Grants Program - Individual
Linking species to ecosystems: predation-mediated nutrient flows
将物种与生态系统联系起来:捕食介导的营养流
  • 批准号:
    227083-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Discovery Grants Program - Individual
Linking species to ecosystems: predation-mediated nutrient flows
将物种与生态系统联系起来:捕食介导的营养流
  • 批准号:
    227083-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 51.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了