Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
基本信息
- 批准号:ST/L005824/1
- 负责人:
- 金额:$ 129.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Greeks used to say matter was indivisible. This notion took a beating when Rutherford and co-workers showed that elements could be transformed by nuclear reactions. For a while it was thought that all the elements were produced in the big bang. Scientists such as Bethe and Hoyle showed in fact that nearly all the elements are produced in nuclear reactions in stars, which also for example make our sun shine. We are still seeking to understand the means by which these elements are produced and how stars evolve during their lifetime. This problem is being addressed through new detailed observations of stellar chemical abundances in the cosmos with telescopes, and here on earth, by trying to re-create the reactions occurring in stars. Elements can be produced by nuclear reactions in highly explosive, hot dense environments such as found in supernovae explosions, with the material subsequently thrown out into the cosmos, and eventually fetching up in locations such as our sun or the interstellar medium. In explosive environments it is the reactions and properties of unstable nuclei that are critical for understanding element production and energy generation in these processes. One can make an analogy with a river in full flood bursting its banks and then flowing in completely different directions: normally life is quiescent and stable, but it is often in these violent episodes that permanent imprints remain. New generation accelerator facilities are able to produce an increasingly large number of the key radioactive nuclear species involved in these explosive processes. So we can now study the reactions occurring in the stars and the subsequent decay paths of nuclei that end up in the stable isotopes we see around us. The elemental abundances of these stable isotopes provide coded information on their often violent history. This new information is required to discover the nature of the explosive environments in which such elements were first formed. In the longer quiescent phase of stars, their evolution is controlled by nuclear reactions occurring at much lower temperatures and densities, and which involve stable isotopes. You might think these would be easier to study, but because the reactions occur at much lower temperatures and densities nuclear fusion is strongly inhibited by the repulsions between the positively charged nuclei, and can only take place with very low probability by quantum tunneling. This leads to low experimental yields, and the signature for the fusion reaction is swamped by reactions produced by cosmic rays. So we are now working at the only underground nuclear astrophysics accelerator laboratory in the world where the rock above forms a protective canopy for our experiments.The structure of stars is intimately tied to the structure of nuclear matter. Neutron stars, a relic of supernovae explosions can usefully be viewed as gigantic nuclei held together by the gravitational force. Precision experiments we are performing with high energy point-like fundamental particle beams are revealing a skin of almost pure neutron matter around the nucleus whose precise thickness tells us about the likely structure of neutron stars. These beams also allow us to peer inside a proton and explore the different ways the quarks inside can re-arrange themselves. These arrangements take the form of different excited states known as nucleon resonances. We think we have a good theory, QCD, to understand the proton but in fact it predicts many more resonances than we observe, so we are going to search for the new ones! Even more exotic configurations, are the so-called hybrids, in which the glue binding quarks together combines with quarks to produce a new form of matter. This would be a major discovery.
希腊人过去常说物质是不可分割的。当卢瑟福和他的同事证明元素可以通过核反应转变时,这个想法受到了打击。有一段时间,人们认为所有元素都是在大爆炸中产生的。贝特和霍伊尔等科学家事实上表明,几乎所有元素都是在恒星的核反应中产生的,例如,这些元素也使我们的太阳发光。我们仍在寻求了解这些元素的产生方式以及恒星在其一生中如何演化。这个问题正在通过用望远镜对宇宙中恒星化学丰度进行新的详细观测来解决,而在地球上,则通过尝试重现恒星中发生的反应来解决。元素可以在高爆炸性、热致密的环境中通过核反应产生,例如超新星爆炸中发现的物质,这些物质随后被抛入宇宙,并最终回到太阳或星际介质等位置。在爆炸性环境中,不稳定原子核的反应和特性对于理解这些过程中的元素产生和能量产生至关重要。我们可以用一条河流来比喻,洪水泛滥,决堤,然后流向完全不同的方向:通常生命是静止和稳定的,但往往在这些暴力事件中留下了永久的印记。新一代加速器设施能够产生越来越多的参与这些爆炸过程的关键放射性核素。因此,我们现在可以研究恒星中发生的反应以及随后的原子核衰变路径,最终形成我们周围看到的稳定同位素。这些稳定同位素的元素丰度提供了有关其暴力历史的编码信息。需要这些新信息来发现这些元素首次形成的爆炸环境的性质。在恒星较长的静止阶段,它们的演化是由在低得多的温度和密度下发生的核反应控制的,并且涉及稳定同位素。您可能认为这些会更容易研究,但由于反应发生在低得多的温度和密度下,核聚变受到带正电的原子核之间的排斥力的强烈抑制,并且只能通过量子隧道以非常低的概率发生。这导致实验产量低,并且聚变反应的特征被宇宙射线产生的反应所淹没。因此,我们现在在世界上唯一的地下核天体物理加速器实验室工作,上面的岩石为我们的实验形成了一个保护罩。恒星的结构与核物质的结构密切相关。中子星是超新星爆炸的遗迹,可以被有效地视为由引力结合在一起的巨大原子核。我们用高能点状基本粒子束进行的精密实验揭示了原子核周围几乎纯中子物质的表皮,其精确的厚度告诉我们中子星的可能结构。这些光束还使我们能够窥视质子内部,并探索内部夸克重新排列的不同方式。这些排列采用不同激发态的形式,称为核子共振。我们认为我们有一个很好的理论,QCD,可以理解质子,但事实上它预测的共振比我们观察到的要多得多,所以我们将寻找新的共振!更奇特的配置是所谓的混合体,其中胶水将夸克与夸克结合在一起,产生一种新形式的物质。这将是一个重大发现。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Corrigendum to: "Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr" [Nucl. Phys. A 899 (2013) 1-28]
勘误:“富中子 Kr 同位素的形状动力学:92Kr、94Kr 和 96Kr 的库仑激发”[Nucl。
- DOI:10.1016/j.nuclphysa.2015.11.010
- 发表时间:2016
- 期刊:
- 影响因子:1.4
- 作者:Albers M
- 通讯作者:Albers M
Improved astrophysical rate for the 18O(p,a)15N reaction by underground measurements
通过地下测量提高 18O(p,a)15N 反应的天体物理速率
- DOI:10.1016/j.physletb.2019.01.017
- 发表时间:2019
- 期刊:
- 影响因子:4.4
- 作者:Bruno C
- 通讯作者:Bruno C
First measurement of polarisation transfer $C^n_{x'}$ in deuteron photodisintegration
氘核光崩解中偏振转移 $C^n_{x}$ 的首次测量
- DOI:10.48550/arxiv.2206.12299
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bashkanov M
- 通讯作者:Bashkanov M
Resonance strengths in the 17,18O(p, a)14,15N reactions and background suppression underground Commissioning of a new setup for charged-particle detection at LUNA
17,18O(p, a)14,15N 反应中的共振强度和地下背景抑制 在 LUNA 上调试新的带电粒子检测装置
- DOI:10.1140/epja/i2015-15094-y
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bruno C
- 通讯作者:Bruno C
TSR: A Storage Ring for HIE-ISOLDE
TSR:HIE-ISOLDE 存储环
- DOI:10.5506/aphyspolb.47.627
- 发表时间:2016
- 期刊:
- 影响因子:0.5
- 作者:Butler P
- 通讯作者:Butler P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip J Woods其他文献
Philip J Woods的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip J Woods', 18)}}的其他基金
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/V001051/1 - 财政年份:2021
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/P004008/1 - 财政年份:2017
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
ISOL-SRS: ISOL Beam Storage Ring Spectrometer
ISOL-SRS:ISOL 光束储存环光谱仪
- 批准号:
ST/M001652/1 - 财政年份:2015
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal - Equipment
爱丁堡核物理小组综合赠款提案 - 设备
- 批准号:
ST/L005832/1 - 财政年份:2014
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/J00006X/1 - 财政年份:2011
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Nuclear STructure, Astrophysics and Reactions (NuSTAR) at FAIR
FAIR 的核结构、天体物理学和反应 (NuSTAR)
- 批准号:
ST/G000646/1 - 财政年份:2010
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Explosive nuclear astrophysical reactions of proton-rich nuclei
富质子核的爆炸核天体物理反应
- 批准号:
PP/F000839/1 - 财政年份:2008
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Decay Spectroscopy of Exotic Nuclei at FAIR
FAIR 中奇异核的衰变光谱
- 批准号:
EP/E001734/1 - 财政年份:2006
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
相似国自然基金
新型核壳型免烧陶粒混凝土及其墙板的物理力学性能和高温性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
银河系中心极端物理环境下的云核性质和恒星形成
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
新型可发光的无支撑双核铱(II)配合物的合成策略、及其光物理与反应特性研究
- 批准号:22171126
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
探索原子核中的对关联和玻色凝聚及相关感兴趣的核物理问题
- 批准号:12147219
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于次临界系统多物理耦合计算的高能核数据同化方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
- 批准号:
ST/Y000293/1 - 财政年份:2024
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/V001051/1 - 财政年份:2021
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/P004008/1 - 财政年份:2017
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal - Equipment
爱丁堡核物理小组综合赠款提案 - 设备
- 批准号:
ST/L005832/1 - 财政年份:2014
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant
Edinburgh Nuclear Physics Group Consolidated Grant Proposal
爱丁堡核物理小组综合赠款提案
- 批准号:
ST/J00006X/1 - 财政年份:2011
- 资助金额:
$ 129.02万 - 项目类别:
Research Grant