Optical Calibration Development for SNO+

SNO 光学校准开发

基本信息

  • 批准号:
    ST/J001171/1
  • 负责人:
  • 金额:
    $ 6.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Some of the most exciting physics to emerge over the last decade has been in the field of neutrino physics. One of the forefront experiments here has been the Sudbury Neutrino Observatory (SNO), based in Canada. The UK has played a leading role in this project, solving the "Solar Neutrino Problem" and clearly demonstrating, for the first time, that neutrinos exists as mixed states which allow them to apparently "oscillate" from one type to another. On the heels of this tremendously successful project, a follow-on experiment is being pursued with a remarkably diverse and interesting range of physics objectives. SNO+ will use a modified version of the instrument to measure fundamental solar neutrino processes (thereby also investigating details of neutrino-matter couplings); search for non-standard modes of nucleon decay; study neutrinos generated from within the earth; look for neutrinos from galactic supernovae; and search for a very rare process called "neutrinoless double beta decay." An observation of the latter would both permit a determination of the absolute neutrino masses and would establish that neutrinos act as their own antiparticles, which could have consequences for our understanding of the matter/antimatter asymmetry in the universe. The project is anticipated to have a rapid timescale, with first data to be taken in 2012.The ability to unravel the nature of interactions observed by the instrument requires a detailed understanding of how light is absorbed, reflected and scattered inside the detector. One of the main contributions being made by the UK involves a network of optical fibres through which different kinds of light may be directed into the detector to help understand these effects and how instrument responds to them. The work of this grant is concerned with enhancing the capabilities of this system and laying the groundwork for future development that would have wide-ranging applications. One aspect of this involves developing a laser system capable of different wavelengths of light through some of these fibres to study light scattering. We will also look to develop a way to accurately monitor how much light gets sent through the system, which would make it useful for other measurements inside the SNO+ detector. Many other experiments also have the need for similar systems and there are even potential applications outside of particle physics, such as those involving precise monitoring in remote or hazardous environments. As one example, a group of nuclear scientists has proposed the use of a similar but much less sophisticated system to monitor real-time uranium leakage in cooling and condensation water during reprocessing. Another aspect to be studies involves further studies of a new circuit that we have designed to produce extremely fast light pulses from LEDs. This light will also be used to send down the fibres in SNO+ to determine the timing response of the detection elements when struck by light. However, such a device would also have other applications where a reliable, inexpensive, fast-pulsed light source is required.Therefore, the R&D associated with this application would not only have a noticeable impact on the ability of SNO+ to explore the remarkable range of scientific questions previously mentioned, but also has a natural link to critical problems in other areas of potential interest.
过去十年中出现的一些最令人兴奋的物理学属于中微子物理学领域。最前沿的实验之一是位于加拿大的萨德伯里中微子观测站(SNO)。英国在该项目中发挥了主导作用,解决了“太阳中微子问题”,并首次清楚地证明中微子以混合状态存在,这使它们能够明显地从一种类型“振荡”到另一种类型。在这个非常成功的项目之后,正在进行一项后续实验,其物理目标范围非常多样化和有趣。 SNO+将使用该仪器的改进版本来测量基本的太阳中微子过程(从而也研究中微子与物质耦合的细节);寻找核子衰变的非标准模式;研究地球内部产生的中微子;寻找来自银河系超新星的中微子;并寻找一种非常罕见的过程,称为“无中微子双贝塔衰变”。对后者的观察既可以确定中微子的绝对质量,又可以确定中微子充当它们自己的反粒子,这可能会对我们对宇宙中物质/反物质不对称性的理解产生影响。该项目的时间预计很快,第一个数据将于 2012 年获取。要想揭开仪器观察到的相互作用的本质,需要详细了解光在探测器内是如何被吸收、反射和散射的。英国做出的主要贡献之一涉及光纤网络,通过该网络可以将不同类型的光引导到探测器中,以帮助了解这些效应以及仪器如何响应它们。这笔赠款的工作涉及增强该系统的功能,并为未来的广泛应用奠定基础。其中一个方面涉及开发一种激光系统,能够通过其中一些光纤发射不同波长的光来研究光散射。我们还将寻求开发一种方法来准确监测通过系统发送的光量,这将使其对 SNO+ 探测器内的其他测量有用。许多其他实验也需要类似的系统,甚至在粒子物理学之外还有潜在的应用,例如涉及远程或危险环境中的精确监控的应用。例如,一组核科学家建议使用一种类似但不太复杂的系统来监测后处理过程中冷却水和冷凝水中的实时铀泄漏。另一个需要研究的方面涉及对我们设计的新电路的进一步研究,该电路用于从 LED 产生极快的光脉冲。该光还将用于向下发送 SNO+ 中的光纤,以确定检测元件在受到光照射时的定时响应。然而,这样的设备也有其他需要可靠、廉价、快速脉冲光源的应用。因此,与该应用相关的研发不仅会对 SNO+ 探索显着范围的能力产生显着影响。前面提到的科学问题,但也与其他潜在兴趣领域的关键问题有着天然的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Biller其他文献

Steven Biller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Biller', 18)}}的其他基金

Collaborative Research: RUI: Extracellular vesicles as vehicles for microbial interactions in marine Black Queen communities
合作研究:RUI:细胞外囊泡作为海洋黑皇后群落微生物相互作用的载体
  • 批准号:
    2304066
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: Quantifying the role of microbial extracellular vesicles in marine dissolved organic matter production and consumption
RUI:合作研究:量化微生物细胞外囊泡在海洋溶解有机物生产和消耗中的作用
  • 批准号:
    2049004
  • 财政年份:
    2021
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a flow cytometer to enhance undergraduate research at Wellesley College
MRI:购买流式细胞仪以加强韦尔斯利学院的本科生研究
  • 批准号:
    2018337
  • 财政年份:
    2020
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Standard Grant
Phase I Loading of 130Te in SNO+
SNO 中 130Te 的 I 期加载
  • 批准号:
    ST/L001837/1
  • 财政年份:
    2013
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Research Grant
SNO+ PROJECT COORDINATION
SNO 项目协调
  • 批准号:
    SNO+
  • 财政年份:
    2010
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Intramural
Seed Corn Funding for Braidwood Project
布雷德伍德项目玉米种子资金
  • 批准号:
    PP/D006848/1
  • 财政年份:
    2006
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Research Grant
International Postdoctoral Fellows Program: Study of Characteristics of Air-Showers Induced by Ultra-High Energy Cosmic Rays Associated with Astrophysical Point-Sources
国际博士后项目:与天体物理点源相关的超高能宇宙线引起的空气簇射特征研究
  • 批准号:
    9301776
  • 财政年份:
    1993
  • 资助金额:
    $ 6.07万
  • 项目类别:
    Standard Grant

相似国自然基金

日冕仪偏振分析的可溯源校准
  • 批准号:
    42374220
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
深海海底管线管多向缩径校准强化机制与多载荷联合作用失效破坏机理
  • 批准号:
    52375389
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
相控阵馈源定标和波束校准关键技术研究
  • 批准号:
    12303095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于变分推断和物理约束的机器学习综合方法校准南极冰架流变参数
  • 批准号:
    42376230
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
自校准型嵌段共聚物的精准合成及其三维自组装行为研究
  • 批准号:
    22308059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Disease-homing light delivery by engineering bioluminescent immune cells for whole body precision photomedicine
通过工程生物发光免疫细胞进行疾病引导光传输,用于全身精准光医学
  • 批准号:
    10578425
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
  • 批准号:
    10649225
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
  • 批准号:
    10760193
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
  • 批准号:
    10659299
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
  • 批准号:
    10693521
  • 财政年份:
    2023
  • 资助金额:
    $ 6.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了