Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution

突破界限:高时空分辨率时代的太阳物理学

基本信息

  • 批准号:
    ST/G004986/1
  • 负责人:
  • 金额:
    $ 28.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

The Sun is the most important astronomical object for humankind, with solar activity driving 'space weather' and having a profound effect on the environment and communications. Here on Earth, we can see directly the effects of the Sun's radiation through fascinating sights such as the aurora. However, currently the power behind the Sun's activity cannot be predicted, or indeed fully explained. Most would expect that as you move away from a fierce heat source, such as a naked flame, the temperature will drop significantly. However, one of the greatest paradoxes plaguing solar-system scientists is the fact that the outer atmosphere of the Sun is much hotter than its surface! An increase in temperature from around 6000 degrees to well over one million degrees as you travel away from the surface belies common sense and has remained at the forefront of solar-system research for over 50 years. Many theories have been proposed in an attempt to understand the inner workings of this complex dynamical system, producing two distinct classes of theory: flare events and wave heating. The former suggests that rapidly occurring, small explosive events in the atmosphere of the Sun may cause the observed steep temperature gradient. The latter relies on the generation of magneto-hydrodynamic (MHD) waves which propagate upwards from the surface of the Sun and dissipate in the corona. A good analogy is to imagine ocean waves travelling across the vast seas before finally releasing their energy when they splash up against a rocky coastline. Theory suggests that MHD waves generated near the surface of the Sun through the continual churning of plasma may propagate upwards if the conditions are correct, ultimately dissipating their energy and heating the outer solar atmosphere. As an STFC Postdoctoral Fellow at QUB, I will utilize modern ground- and space-based telescopes containing a wide assortment of high resolution instruments. The observational component of my research programme will focus on the distinction of individual MHD waves, which will allow key characteristics to be evaluated. These include the mode of oscillation (longitudinal, transverse, etc.), the velocity, the direction and of course, the energy. I will compare these values to those specific for atmospheric heating of the Sun, thus allowing the current theoretical heating models described above to be validated or refuted. Computer simulations will also be implemented to validate observational methodologies and accuracy, culminating in much refined models of the solar atmosphere. With the rapid advancements made in the field of solar physics over the last number of years (better telescopes, detectors and computers), the ability to finally resolve the atmospheric heating paradox is now a reality and that is what I will strive to do as an STFC Postdoctoral Fellow.
太阳是人类最重要的天文对象,太阳活动驱动“太空天气”,并对环境和通信产生深远的影响。在地球上,我们可以直接看到太阳辐射通过迷人的景象(例如极光)的影响。但是,目前无法预测太阳活动背后的力量,也无法完全解释。大多数人会期望,随着您远离猛烈的热源,例如裸火,温度会大大下降。但是,困扰太阳系科学家的最大悖论之一是,太阳的外部大气比其表面热得多!当您离开地面掩盖了常识时,温度从约6000度升至超过一百万度,并且已经在太阳系研究的最前沿已有50多年的历史了。已经提出了许多理论,试图理解这个复杂的动力学系统的内部运作,产生了两个不同的理论类别:耀斑事件和波浪加热。前者表明,在太阳大气中迅速发生的小型爆炸性事件可能会导致观察到的陡峭温度梯度。后者依赖于产生的磁性流动力(MHD)波,这些波浪从太阳的表面向上传播并在电晕中消失。一个很好的类比是想象海浪在广阔的海洋中传播,然后在他们溅到岩石海岸线上时最终释放了他们的能量。理论表明,如果条件正确,可以通过连续的血浆搅拌在太阳表面附近产生的MHD波,最终会散发其能量并加热外部太阳能大气。作为QUB的STFC博士后研究员,我将利用现代地面和空间望远镜,其中包含各种高分辨率仪器。我的研究计划的观察成分将集中在单个MHD波的区别上,这将允许评估关键特征。这些包括振荡模式(纵向,横向等),速度,方向,当然还有能量。我将将这些值与针对太阳大气加热的值进行比较,从而允许上述当前的理论加热模型得到验证或驳斥。还将实施计算机模拟以验证观察方法和准确性,并在太阳大气的许多精制模型中达到最终形式。随着在过去的几年中(更好的望远镜,探测器和计算机)在太阳能领域的快速进步,最终解决大气加热悖论的能力现在是现实,这就是我将作为STFC Postdoctoral exherne努力做的事情。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TRACE observations of driven loop oscillations
驱动环路振荡的 TRACE 观察
  • DOI:
    10.1051/0004-6361/201014265
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Ballai I
  • 通讯作者:
    Ballai I
THE SOURCE OF 3 MINUTE MAGNETOACOUSTIC OSCILLATIONS IN CORONAL FANS
日冕扇中 3 分钟磁声振荡的来源
  • DOI:
    10.1088/0004-637x/757/2/160
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jess D
  • 通讯作者:
    Jess D
THE AREA DISTRIBUTION OF SOLAR MAGNETIC BRIGHT POINTS
  • DOI:
    10.1088/2041-8205/722/2/l188
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. J. Crockett;M. Mathioudakis;D. Jess;S. Shelyag;F. Keenan;Damian J. Christian
  • 通讯作者:
    P. J. Crockett;M. Mathioudakis;D. Jess;S. Shelyag;F. Keenan;Damian J. Christian
FREQUENCY FILTERING OF TORSIONAL ALFVÉN WAVES BY CHROMOSPHERIC MAGNETIC FIELD
  • DOI:
    10.1088/2041-8205/740/2/l46
  • 发表时间:
    2011-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Fedun;G. Verth;D. Jess;R. Erdélyi
  • 通讯作者:
    V. Fedun;G. Verth;D. Jess;R. Erdélyi
THE SEARCH FOR SUPER-SATURATION IN CHROMOSPHERIC EMISSION
寻找色球发射的超饱和度
  • DOI:
    10.1088/0004-637x/738/2/164
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian D
  • 通讯作者:
    Christian D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jess其他文献

David Jess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jess', 18)}}的其他基金

PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
  • 批准号:
    ST/X005526/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
  • 批准号:
    ST/V00199X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
  • 批准号:
    ST/S001298/1
  • 财政年份:
    2018
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Research Grant
Nanoflares: Explosive Heating of our Sun's Atmosphere
纳米耀斑:太阳大气的爆炸性加热
  • 批准号:
    ST/L002744/1
  • 财政年份:
    2014
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Research Grant
Waves and Flows: Linking the Solar Photosphere to the Corona
波与流:将太阳光球层与日冕联系起来
  • 批准号:
    ST/K004220/1
  • 财政年份:
    2013
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Fellowship

相似国自然基金

PEM燃料电池系统氢循环引射器复杂流体边界掺混机理研究
  • 批准号:
    52306268
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
精确高效模拟功能梯度压电壳的比例边界有限元法
  • 批准号:
    12302262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
  • 批准号:
    12375228
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
  • 批准号:
    52372348
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
趋化模型自由边界问题解的渐近性分析
  • 批准号:
    12301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Discovery Projects
DISTOPIA - Distorting the Aerospace Manufacturing Boundaries: Operational Integration of Autonomy on Titanium
DISTOPIA - 扭曲航空航天制造边界:钛合金上的自主运营集成
  • 批准号:
    10086469
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Collaborative R&D
Drawing Civic Boundaries
划定公民界限
  • 批准号:
    2902522
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Studentship
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 28.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了