Synchronising Earth Observation and Modelling Frameworks Towards a Digital Twin Ocean (SyncED-Ocean)
同步地球观测和建模框架以实现数字孪生海洋 (SyncED-Ocean)
基本信息
- 批准号:NE/Z50337X/1
- 负责人:
- 金额:$ 85.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
SyncED-Ocean will deliver a digital twin (DT) pilot demonstrator of a coastal ocean ecosystem that uses and optimises EO data for assimilation to marine system models, augmented by marine autonomous systems that enable agile and adaptive connectivity between the real and virtual components of our DT. To develop the required data and computational architecture, we will focus on significantly improving on current predictive capability of harmful algal blooms (HABs) and subsequent impacts on ocean oxygen content in UK coastal seas. Both phenomena represent natural hazards, threatening serious risk to ocean health, biodiversity and productivity, and evidence is growing that each are being exacerbated in coastal seas under climate change. As such, we will firmly address each of the described priority areas. Our demonstrator will deliver complete data pipelines (as described in the IMFe report) towards providing an agile DT capable of underpinning decision support tools for future research, policy and commercial applications focused on improved management of our environment and the natural capital and ecosystem services it supports.We will build on previous success from the project team in combining EO, autonomous in situ and ocean model data, increasing trust in the chosen observational datasets to provide the best representation of the 'true state' of the real-world, to suitably inform the virtual component within our DT. Space, time and coverage biases from individual data sources will be addressed through collective representation of the broad range of scales relevant to coastal ocean ecosystems using this combined and optimised dataset. An adaptive sampling framework will reconnect the virtual twin via a smart observing system that directs mobile autonomous ocean gliders to best inform and improve the DT towards its HAB and oxygen prediction objectives.Our data and computational architecture will be developed around EO and autonomy community interfaces based on FAIR and open source principles and the DT framework will be developed in close collaboration with both environmental and digital experts and communities to ensure its core functionalities are scalable, modular and built-upon community best practices. This will enable our DT architecture to be reconfigured and deployed to support a wide range of future environmental DTs, contributing to a lasting legacy of this requested investment.
同步海洋将提供一个沿海海洋生态系统的数字双胞胎(DT)试点演示器,该沿海海洋生态系统使用并优化了EO数据以吸收海洋系统模型,并通过海洋自主系统增强了我们的DT的真实和虚拟组件之间的敏捷和适应性连接性。为了开发所需的数据和计算体系结构,我们将重点关注有害藻华(HAB)的当前预测能力,以及随后对英国沿海海洋海洋氧含量的影响。这两种现象都代表着自然危害,威胁着海洋健康,生物多样性和生产力的严重风险,并且有证据表明,在气候变化下,沿海海中每种都会加剧。因此,我们将牢固地解决每个描述的优先领域。我们的演示者将提供完整的数据管道(如IMFE报告中所述),以提供一个能够为未来的研究,政策和商业应用程序提供支持的敏捷DT,这些敏捷的DT专注于改善我们环境的管理以及它所支持的自然资本和生态系统服务的管理。状态的“现实世界”,以适当地告知我们DT中的虚拟组件。通过此组合和优化的数据集,将通过集体代表与沿海海洋生态系统相关的广泛量表来解决各个数据源的空间和覆盖偏差。 An adaptive sampling framework will reconnect the virtual twin via a smart observing system that directs mobile autonomous ocean gliders to best inform and improve the DT towards its HAB and oxygen prediction objectives.Our data and computational architecture will be developed around EO and autonomy community interfaces based on FAIR and open source principles and the DT framework will be developed in close collaboration with both environmental and digital experts and communities to ensure its core functionalities are可扩展,模块化和建立的社区最佳实践。这将使我们的DT体系结构重新配置和部署,以支持广泛的未来环境DT,从而有助于这项要求的投资的持久遗产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Palmer其他文献
Frequency based Audio Classification for Preventive Maintenance in Automobile Engines
用于汽车发动机预防性维护的基于频率的音频分类
- DOI:
10.1109/icaeeci58247.2023.10370848 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Debie Shajie A;S. Juliet;K. Ezra;Matthew Palmer;Blessy Annie Flora J - 通讯作者:
Blessy Annie Flora J
How accurate is your average? Considering error when counting sea lice on open-pen salmon farms
你的平均值有多准确?
- DOI:
10.1016/j.aquaculture.2024.741244 - 发表时间:
2024 - 期刊:
- 影响因子:4.5
- 作者:
Alexes Mes;Jed Stephens;Matthew Palmer;Rachel Mulrenan;Corin Smith - 通讯作者:
Corin Smith
New-Onset Proteinuria in a Patient With Schwannoma.
神经鞘瘤患者新发蛋白尿。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:13.2
- 作者:
Liann Abu Salman;Christos Kallis;Matthew Palmer;Jehan Z. Bahrainwala;A. Geara - 通讯作者:
A. Geara
364. The BDNF Val66Met Polymorphism Moderates the Relationship between PTSD and Fear Extinction Learning
- DOI:
10.1016/j.biopsych.2017.02.381 - 发表时间:
2017-05-15 - 期刊:
- 影响因子:
- 作者:
Kim Felmingham;Daniel Zuj;Ken Chia Ming Hsu;Emma Nicholson;Matthew Palmer;Kimberly Stuart;James Vickers;Gin Malhi;Richard Bryant - 通讯作者:
Richard Bryant
Dancers Show More Accurate Trunk-Pelvic Joint Angle Reproduction While Wearing a Jacket Augmented With Elastic Bands
舞者在穿着带有松紧带的夹克时表现出更准确的躯干-骨盆关节角度再现
- DOI:
10.1177/1089313x241232446 - 发表时间:
2024 - 期刊:
- 影响因子:0.9
- 作者:
James Hackney;S. Wilcoxon;Jon Tallerico;Matthew Palmer;Ashleigh Waltz;Kyle Stringer;Andrew Hall - 通讯作者:
Andrew Hall
Matthew Palmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Palmer', 18)}}的其他基金
An Alternative Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterEco)
评估陆架海海洋生态系统功能的替代框架 (AlterEco)
- 批准号:
NE/P013902/2 - 财政年份:2019
- 资助金额:
$ 85.56万 - 项目类别:
Research Grant
An Alternative Framework to Assess Marine Ecosystem Functioning in Shelf Seas (AlterEco)
评估陆架海海洋生态系统功能的替代框架 (AlterEco)
- 批准号:
NE/P013902/1 - 财政年份:2017
- 资助金额:
$ 85.56万 - 项目类别:
Research Grant
A nutrient and carbon pump over mid-ocean ridges (RidgeMix)
大洋中脊上的营养物和碳泵 (RidgeMix)
- 批准号:
NE/L003406/1 - 财政年份:2014
- 资助金额:
$ 85.56万 - 项目类别:
Research Grant
相似国自然基金
杨柳坪超大型Cu-Ni-PGE矿床硫化物熔体固化过程铂族元素地球化学行为精细研究
- 批准号:42303019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南海北部“海马”与“F站位”冷泉生物的元素和同位素地球化学特征及其对甲烷来源的示踪
- 批准号:42372161
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
- 批准号:42302189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
东北森林干扰的生物地球物理效应及其机制解析
- 批准号:42371075
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
NERC Earth Observation Data Analysis and Artificial-Intelligence Service (NEODAAS)
NERC 地球观测数据分析和人工智能服务 (NEODAAS)
- 批准号:
NE/Y005406/1 - 财政年份:2024
- 资助金额:
$ 85.56万 - 项目类别:
Research Grant
Addressing The Deficiencies Of ESG Data Using Earth Observation Technologies
利用地球观测技术解决 ESG 数据的缺陷
- 批准号:
900264 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Collaborative R&D
EO4SDGs: Spatiotemporal poverty mapping using earth observation data and deep learning in Africa
EO4SDGs:利用地球观测数据和深度学习绘制非洲时空贫困图
- 批准号:
2890076 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Studentship
Automatic Landslide Mapping with Earth Observation Data
利用地球观测数据自动绘制滑坡地图
- 批准号:
2884587 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Studentship
Monitoring and Evaluation of Sustainable Development Goals using Earth Observation and Artificial Intelligence in Rural Africa
利用地球观测和人工智能在非洲农村监测和评估可持续发展目标
- 批准号:
2830853 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Studentship