The Future of Extreme European Winter Weather

欧洲极端冬季天气的未来

基本信息

  • 批准号:
    NE/S014713/1
  • 负责人:
  • 金额:
    $ 66.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Every time there is an extreme weather event, there is much speculation about the role played by climate change. Questions that are particularly relevant for Europeans include how is climate change affecting the occurrence of flooding brought about by severe storminess, like that seen in the 2013/14 winter, or storms Emma and Friederike in 2017/18? How is it affecting cold air outbreaks like the "Beast from the East" in 2018? Until now, our capacity for studying the impact of climate change on weather extremes has been limited. This is because we could not run atmospheric models that can successfully simulate weather events like these for long enough to be able to study climate change's effect - this requires thousands of years of simulation time. But I have recently led development of a system that can achieve this, using distributed computing and an atmospheric model with a fine enough grid spacing to be able to simulate extreme storms and anticyclones realistically. I will exploit this system to show how climate change is affecting extreme weather systems, with a particular focus on winter storms in Europe. This will done by seeing how the model simulations respond to specified changes in greenhouse gas levels and other atmospheric constituents and changes in the oceans and sea ice associated with climate change. This allows an exquisite level of control over the climate change scenario being simulated, and makes it possible to simulate a wide range of futures.However, it is not sufficient to run a single climate model and just report its best estimate of climate change's effect. It also needs to be shown what is the range of possible outcomes. This is necessary to ensure that decision-makers can prepare for the worst possible outcomes whilst not wasting resources on adapting to scenarios that are very unlikely. It is also very important to understand the physical mechanisms behind climate change's impact, so that we can make better judgements about how much to trust the model simulations.I will investigate the main sources of uncertainty in how climate change will affect weather extremes in a given future scenario: 1. Uncertainty about how to best model the atmosphere.2. Uncertainty about how atmospheric dynamics will change, for example the shift in the mean latitude of the jet stream, or changes in the frequency of blocking events (when stable, high-pressure systems form and divert storms to the north and south).3. Uncertainty in the future factors that will influence the atmosphere, namely ocean temperatures, ice cover and the atmospheric chemical composition (including man-made greenhouse gases and aerosols).To understand the mechanisms behind how climate change is affecting Europe's weather, I will first separate the changes in man-made greenhouse gas and aerosol levels in the atmosphere from the oceanic changes, then further divide the latter into changes in different regions (such as the North Atlantic, the Arctic, the tropics etc.). Experiments will be done to see the effect of each change separately. This will help to answer questions such as how are North Atlantic storms affected by warming of the ocean waters there, which may invigorate storms by evaporating more water, providing more fuel for their growth? Are changes more due to remote influences of the tropics and Arctic? There has been much speculation in the media about the melting of sea ice in the Arctic being a driver of European extreme weather, for instance, but is still very scientifically controversial, and its impact on extreme weather events has not been studied in this way before.Overall, this research will give us much greater confidence and understanding about how climate change will be felt through extreme European winter weather, informing governments and industries about the difference that reducing greenhouse gas emissions will make, and helping decision-makers to plan for the future.
每次发生极端天气事件时,人们都会对气候变化所扮演的角色进行很多猜测。与欧洲人特别相关的问题包括气候变化如何影响严重暴风雨(如 2013/14 年冬季所见的洪水)或 2017/18 年的艾玛和弗里德里克风暴带来的洪水的发生?对2018年“东方猛兽”等冷空气爆发有何影响?到目前为止,我们研究气候变化对极端天气影响的能力仍然有限。这是因为我们无法运行能够成功模拟此类天气事件足够长的时间的大气模型,以便能够研究气候变化的影响 - 这需要数千年的模拟时间。但我最近领导了一个可以实现这一目标的系统的开发,该系统使用分布式计算和具有足够精细网格间距的大气模型,能够真实地模拟极端风暴和反气旋。我将利用这个系统来展示气候变化如何影响极端天气系统,特别关注欧洲的冬季风暴。这将通过观察模型模拟如何响应温室气体水平和其他大气成分的特定变化以及与气候变化相关的海洋和海冰的变化来完成。这使得对所模拟的气候变化情景进行精确控制成为可能,并且可以模拟广泛的未来。但是,运行单一气候模型并仅报告其对气候变化影响的最佳估计是不够的。还需要表明可能结果的范围是什么。这是必要的,以确保决策者能够为最坏的可能结果做好准备,同时不会浪费资源来适应不太可能出现的情况。了解气候变化影响背后的物理机制也非常重要,这样我们就可以更好地判断模型模拟的可信度。我将调查气候变化如何影响给定天气极端天气的主要不确定性来源未来情景: 1. 如何最好地模拟大气的不确定性。2.大气动力学将如何变化的不确定性,例如急流平均纬度的变化,或阻塞事件频率的变化(当稳定的高压系统形成并将风暴转向北方和南方时)。3。未来影响大气的不确定因素,即海洋温度、冰盖和大气化学成分(包括人造温室气体和气溶胶)。要了解气候变化影响欧洲天气背后的机制,我首先将分开将人为温室气体和大气中气溶胶水平的变化归因于海洋的变化,然后将后者进一步划分为不同区域(如北大西洋、北极、热带等)的变化。将进行实验以分别查看每个更改的效果。这将有助于回答诸如北大西洋风暴如何受到海水变暖的影响,这可能会通过蒸发更多的水来加剧风暴,为风暴的生长提供更多的燃料?变化更多的是由于热带和北极的遥远影响吗?例如,媒体有很多猜测,北极海冰融化是欧洲极端天气的驱动因素,但在科学上仍然存在很大争议,而且以前从未以这种方式研究过它对极端天气事件的影响。总体而言,这项研究将使我们对欧洲极端冬季天气如何感受气候变化有更大的信心和理解,让政府和行业了解减少温室气体排放将产生的影响,并帮助决策者制定计划未来。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Larger spatial footprint of wintertime total precipitation extremes in a warmer climate
气候变暖时冬季总降水量的空间足迹更大
  • DOI:
    http://dx.10.1002/essoar.10505310.1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bevacqua E
  • 通讯作者:
    Bevacqua E
TRU-NET: a deep learning approach to high resolution prediction of rainfall
TRU-NET:高分辨率降雨预测的深度学习方法
  • DOI:
    10.1007/s10994-021-06022-6
  • 发表时间:
    2020-08-20
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Rilwan A. Adewoyin;P. Dueben;P. Watson;Yulan He;Ritabrata Dutta
  • 通讯作者:
    Ritabrata Dutta
Cold Weather Teleconnections from Future Arctic Sea Ice Loss and Ocean Warming
未来北极海冰消失和海洋变暖的寒冷天气遥相关
  • DOI:
    http://dx.10.1002/essoar.10512271.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lo Y
  • 通讯作者:
    Lo Y
Generating samples of extreme winters to support climate adaptation
生成极端冬季样本以支持气候适应
  • DOI:
    http://dx.10.1002/essoar.10508424.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leach N
  • 通讯作者:
    Leach N
Generating samples of extreme winters to support climate adaptation
生成极端冬季样本以支持气候适应
  • DOI:
    http://dx.10.1016/j.wace.2022.100419
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Leach N
  • 通讯作者:
    Leach N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Watson其他文献

Phenotypic and Genetic Analysis of Diarrhea-Associated Escherichia coli Isolated From Children in the United Kingdom
英国儿童腹泻相关大肠杆菌的表型和遗传分析
The neural basis of effective memory therapy in a patient with limbic encephalitis
边缘叶脑炎患者有效记忆治疗的神经基础
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Emma Berry;Adam Hampshire;James B. Rowe;Steve Hodges;Narinder Kapur;Peter Watson;Georgina Browne;G. Smyth;Ken Wood;Adrian M. Owen
  • 通讯作者:
    Adrian M. Owen
Category specific semantic loss in dementia of Alzheimer's type. Functional-anatomical correlations from cross-sectional analyses.
阿尔茨海默氏型痴呆症中类别特定的语义丧失。
  • DOI:
    10.1093/brain/121.4.633
  • 发表时间:
    1998-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Garrard;K. Patterson;Peter Watson;John R. Hodges
  • 通讯作者:
    John R. Hodges
The modified CAMDEX informant interview is a valid and reliable tool for use in the diagnosis of dementia in adults with Down's syndrome.
改良的 CAMDEX 知情者访谈是诊断成人唐氏综合症痴呆症的有效且可靠的工具。
Dietary antioxidant and mineral intake in humans is associated with reduced risk of esophageal adenocarcinoma but not reflux esophagitis or Barrett's esophagus.
人类饮食中的抗氧化剂和矿物质摄入量与食管腺癌风险降低相关,但与反流性食管炎或巴雷特食管无关。
  • DOI:
    10.3945/jn.110.124362
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Murphy;L. Anderson;H. R. Ferguson;B. Johnston;Peter Watson;J. McGuigan;H. Comber;J. Reynolds;L. Murray;M. Cantwell
  • 通讯作者:
    M. Cantwell

Peter Watson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Watson', 18)}}的其他基金

Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.6万
  • 项目类别:
    Research Grant
Future Rainfall and Flood Extremes (FURFLEX)
未来降雨量和极端洪水 (FURFLEX)
  • 批准号:
    NE/Z000076/1
  • 财政年份:
    2024
  • 资助金额:
    $ 66.6万
  • 项目类别:
    Research Grant

相似国自然基金

极端光场条件下正电子束的产生、加速和操控研究
  • 批准号:
    12375244
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
极端团队的工作特征与团队韧性研究:基于认知与情绪的双通路机制
  • 批准号:
    72302214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
驾驶人极端情绪下风险映射解析的自适应主动干预研究
  • 批准号:
    52302497
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海底观测极端环境供电系统继电保护与自愈方案研究
  • 批准号:
    52377094
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
极端暴雨灾害下地铁线网系统韧性提升方法与策略研究
  • 批准号:
    72304126
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

eXtreme EuRopean drOughtS: multimodel synthesis of past, present and future events
欧洲极端干旱:过去、现在和未来事件的多模型综合
  • 批准号:
    412863158
  • 财政年份:
    2019
  • 资助金额:
    $ 66.6万
  • 项目类别:
    Research Grants
Identifying Methamphetamine Risk Variants by Extreme Phenotype Exome Sequencing
通过极端表型外显子组测序识别甲基苯丙胺风险变异体
  • 批准号:
    9280890
  • 财政年份:
    2015
  • 资助金额:
    $ 66.6万
  • 项目类别:
Identifying Methamphetamine Risk Variants by Extreme Phenotype Exome Sequencing
通过极端表型外显子组测序识别甲基苯丙胺风险变异体
  • 批准号:
    9456704
  • 财政年份:
    2015
  • 资助金额:
    $ 66.6万
  • 项目类别:
Identifying Methamphetamine Risk Variants by Extreme Phenotype Exome Sequencing
通过极端表型外显子组测序识别甲基苯丙胺风险变异体
  • 批准号:
    9920116
  • 财政年份:
    2015
  • 资助金额:
    $ 66.6万
  • 项目类别:
Identifying Methamphetamine Risk Variants by Extreme Phenotype Exome Sequencing
通过极端表型外显子组测序识别甲基苯丙胺风险变异体
  • 批准号:
    9086352
  • 财政年份:
    2015
  • 资助金额:
    $ 66.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了