Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)

英国区域温室气体排放的检测和归因(DARE-UK)

基本信息

  • 批准号:
    NE/S004521/1
  • 负责人:
  • 金额:
    $ 30.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

In order to mitigate the effects of climate change, governments, private companies and individual citizens are taking action to reduce emissions of greenhouse gases (GHGs). Our project will provide new information that can be used to better evaluate the change in emissions that result from these actions. We will help the UK government track the effectiveness of emissions reductions policies that have been implemented to meet the targets laid out in the Climate Change Act (2008), which mandates that GHG emissions are reduced by 80% below 1990 levels by 2050. The UK has played a major part in recent scientific and technological advances in emissions reporting and evaluation. Its GHG emission inventory, which is compiled based on data relating to human activities and rates of emission from each activity, is world-leading. Furthermore, the UK is one of only two countries that regularly submits a second estimate of emissions, those derived from atmospheric measurements, as part of its annual United Nations Framework Convention on Climate Change (UNFCCC) submission. This second "top-down" estimate can be used to assess where uncertainties lie in the inventory and where further development is needed. However, limitations exist in our scientific knowledge and in our technical capabilities that prevent the UK, or any other country, from further improving its emissions reports through the incorporation of atmospheric data. Through the NERC Greenhouse Gas & Emissions Feedback programme, which ended in 2017, we demonstrated the ability to quantify the UK's net national GHG fluxes using atmospheric observations. However, we have not yet been able to separately estimate fossil fuel and biospheric carbon dioxide sources and sinks, or determine the major sectors driving changes in the UK's methane emissions. This proposal will develop new science to address these needs, and pave the way towards the next generation of GHG evaluation methodologies. Our work will span four key areas:1) Improving models of emissions from individual source and sink sectors to determine when and where GHG emissions to the atmosphere occur from both natural and anthropogenic systems.2) Utilising new surface and satellite atmospheric GHG observations, such as isotopic measurements of methane and carbon dioxide, and measurements of co-emitted or exchanged gases (oxygen, carbon monoxide, nitrogen dioxide and ethane) to provide information on emissions from different sectors.3) Utilising enhanced model-data fusion methods for making use of these new observations and for better quantifying uncertainties.4) Integrating data streams to determine the highest level of confidence in the UK's emissions estimate.To improve the transparency of national reports, scientists and policy makers have been strongly advocating for the combination of such methods in the reporting process. The UNFCCC, at its 2017 Conference of Parties, acknowledged the important role that emissions quantified through atmospheric observations could have in supporting inventory evaluation (SBSTA/2017/L.21). Through our close links to the inventory communities in the UK and around the world, the IPCC and to UK policy makers, we can ensure that our work will be used to update and improve the UK's GHG submission to the UNFCCC and will showcase methods of best-practice.
为了减轻气候变化的影响,政府、私营公司和公民个人正在采取行动减少温室气体(GHG)的排放。我们的项目将提供新信息,可用于更好地评估这些行动造成的排放变化。我们将帮助英国政府跟踪为实现《气候变化法案》(2008 年)中规定的目标而实施的减排政策的有效性,该法案要求到 2050 年将温室气体排放量比 1990 年的水平减少 80%。在排放报告和评估方面的最新科技进步中发挥了重要作用。其温室气体排放清单是根据人类活动相关数据和各项活动的排放率编制的,处于世界领先水平。此外,英国是仅有的两个定期提交第二次排放估算的国家之一,这些排放估算来自大气测量,作为其年度《联合国气候变化框架公约》(UNFCCC)提交的一部分。第二个“自上而下”的估计可用于评估清单中的不确定性以及需要进一步开发的地方。然而,我们的科学知识和技术能力存在局限性,阻止英国或任何其他国家通过纳入大气数据来进一步改进其排放报告。通过 NERC 温室气体和排放反馈计划(于 2017 年结束),我们展示了利用大气观测来量化英国国家温室气体净通量的能力。然而,我们尚未能够单独估计化石燃料和生物圈二氧化碳的源和汇,或确定推动英国甲烷排放变化的主要部门。该提案将开发新的科学来满足这些需求,并为下一代温室气体评估方法铺平道路。我们的工作将涵盖四个关键领域:1) 改进各个源和汇部门的排放模型,以确定自然和人为系统向大气排放温室气体的时间和地点。2) 利用新的地表和卫星大气温室气体观测数据,例如如甲烷和二氧化碳的同位素测量,以及共同排放或交换的气体(氧气、一氧化碳、二氧化氮和乙烷)的测量,以提供有关不同部门排放的信息。3) 利用增强的模型数据融合方法利用这些新的观察结果并更好地量化不确定性。4) 整合数据流以确定英国排放估算的最高置信度。为了提高国家报告的透明度,科学家和政策制定者一直大力倡导将报告过程中采用此类方法。 《联合国气候变化框架公约》在 2017 年缔约方大会上承认,通过大气观测量化的排放量在支持清单评估方面可发挥重要作用(SBSTA/2017/L.21)。通过我们与英国和世界各地的清单界、IPCC 和英国政策制定者的密切联系,我们可以确保我们的工作将用于更新和改进英国向 UNFCCC 提交的温室气体排放情况,并将展示最佳方法-实践。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Two decades of flask observations of atmospheric d(O2/N2), CO2, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland), and 3 years from Halley station (Antarctica)
二十年来对大气的烧瓶观测
  • DOI:
    http://dx.10.5194/essd-14-991-2022
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Nguyen L
  • 通讯作者:
    Nguyen L
12 years of continuous atmospheric O 2 , CO 2 and APO data from Weybourne Atmospheric Observatory in the United Kingdom
英国韦伯恩大气观测站12年连续大气O 2 、CO 2 和APO数据
  • DOI:
    http://dx.10.5194/essd-15-5183-2023
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Adcock K
  • 通讯作者:
    Adcock K
Novel quantification of regional fossil fuel CO2 reductions during COVID-19 lockdowns using atmospheric oxygen measurements.
使用大气氧测量对 COVID-19 封锁期间区域化石燃料二氧化碳减少量进行新的量化。
  • DOI:
    http://dx.10.1126/sciadv.abl9250
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Pickers PA
  • 通讯作者:
    Pickers PA
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
大气中的氧气作为化石燃料二氧化碳的示踪剂:英国的一项敏感性研究
  • DOI:
    http://dx.10.5194/egusphere-2023-385
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chawner H
  • 通讯作者:
    Chawner H
The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements
地面大气 CO 2 测量显示 2018 年夏季欧洲干旱的指纹
  • DOI:
    http://dx.10.1098/rstb.2019.0513
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramonet M
  • 通讯作者:
    Ramonet M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Manning其他文献

Vision-Based Autonomous Landing of a Quadrotor on the Perturbed Deck of an Unmanned Surface Vehicle
四旋翼飞行器在无人水面飞行器扰动甲板上基于视觉的自主着陆
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Riccardo Polvara;Sanjay K. Sharma;Jian Wan;Andrew Manning;R. Sutton
  • 通讯作者:
    R. Sutton
Advanced feature extraction and dimensionality reduction for unmanned underwater vehicle fault diagnosis
无人水下航行器故障诊断的高级特征提取和降维
Word association and the acquisition of reading
单词联想和阅读习得
  • DOI:
    10.1007/bf01067388
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    2
  • 作者:
    V. Cronin;M. Pratt;JoAnne Abraham;Diana Howell;Sandra Bishop;Andrew Manning
  • 通讯作者:
    Andrew Manning
Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles
无人水面车辆自主导航的避障方法
  • DOI:
    10.1017/s0373463317000753
  • 发表时间:
    2017-10-10
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Riccardo Polvara;Sanjay K. Sharma;Jian Wan;Andrew Manning;R. Sutton
  • 通讯作者:
    R. Sutton
Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement Learning
使用深度强化学习在无人驾驶水面车辆的甲板上自主着陆
  • DOI:
    10.1017/s0263574719000316
  • 发表时间:
    2019-04-08
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Riccardo Polvara;Sanjay K. Sharma;Jian Wan;Andrew Manning;R. Sutton
  • 通讯作者:
    R. Sutton

Andrew Manning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Manning', 18)}}的其他基金

The Global Methane Budget
全球甲烷预算
  • 批准号:
    NE/N016238/1
  • 财政年份:
    2016
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Is the Arctic methane budget changing?
北极甲烷预算是否发生变化?
  • 批准号:
    NE/I013342/1
  • 财政年份:
    2011
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Methane and other greenhouse gases in the Arctic - measurements, process studies and modelling (MAMM)
北极的甲烷和其他温室气体 - 测量、过程研究和建模 (MAMM)
  • 批准号:
    NE/I02934X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
An investigation into the effects of solvent content on the image quality and stability of ink jet digital prints under varied storage conditions.
研究不同储存条件下溶剂含量对喷墨数字印刷品图像质量和稳定性的影响。
  • 批准号:
    AH/G011796/1
  • 财政年份:
    2009
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
The South Atlantic / Southern Ocean carbon sink: Is it significant, and is it changing over time?
南大西洋/南大洋碳汇:是否重要,是否随时间变化?
  • 批准号:
    NE/F005733/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Assessment of physical changes occurring during conservation treatment, storage and display of cultural artefacts based on cellulosic materials
评估基于纤维素材料的文物在保护处理、储存和展示过程中发生的物理变化
  • 批准号:
    AH/E009034/1
  • 财政年份:
    2007
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant

相似国自然基金

深度融合人机智能的研究生学术能力评价、归因与提升路径研究
  • 批准号:
    62377008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
全新世中期至小冰期中国自然植被变化的模拟及归因研究
  • 批准号:
    42307556
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多源数据同化的东北地区陆地水储量变化模拟与归因研究
  • 批准号:
    42301436
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向决策策略优化的绩效归因分析及其在产业平台经济中的应用研究
  • 批准号:
    72371091
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
基于知识推理的网络威胁归因技术研究
  • 批准号:
    62372129
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003614/1
  • 财政年份:
    2019
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003746/1
  • 财政年份:
    2019
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S003819/1
  • 财政年份:
    2019
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S004505/1
  • 财政年份:
    2019
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
  • 批准号:
    NE/S004947/1
  • 财政年份:
    2019
  • 资助金额:
    $ 30.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了