How did the evolution of plants, microbial symbionts and terrestrial nutrient cycles change Earth's long-term climate?

植物、微生物共生体和陆地养分循环的进化如何改变地球的长期气候?

基本信息

  • 批准号:
    NE/S009663/1
  • 负责人:
  • 金额:
    $ 78.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Phanerozoic Eon (the last 540 million years) encompasses the evolutionary history of land plants from the initial colonization of the land through to forests and flowering plants. Earth's climate has undergone major changes over this timeframe, but it remains uncertain whether these changes were primarily driven by revolutions in the terrestrial biosphere, or by tectonic factors such as volcanic degassing of CO2. Resolution of this question lies at the heart of our understanding of how our planet operates, but the ability to answer it has been hampered by a lack of representation of the terrestrial biosphere in our biogeochemical computer models. These 'deep-time' models need to be simple in order to compute very long timescales, and this limits the ability to include spatial features such as locations of rainfall, which are vital to terrestrial modelling. A perhaps more fundamental problem is the lack of understanding of the way that plant evolution has altered global chemical cycling through changes to carbon-nitrogen-phosphorus ratios in tissue, and what the contribution of fungal and microbial symbionts were to supplying key limiting nutrients. This project brings together expertise in computer science, geochemistry, ecology and plant-symbiont physiology to build a new deep-time spatial Earth system model, informed by a targeted suite of plant growth experiments and a robust literature review.Firstly, we will run laboratory experiments with early diverging plants and symbiotic nitrogen-fixing trees, with and without partnership with fungal and/or nitrogen-fixing symbionts in microcosms with controlled atmospheric CO2 concentrations. Introduction of isotopically-labeled carbon, nitrogen and phosphorus will allow us to capture the carbon-nitrogen-phosphorus stoichiometric ratios and nutrient acquisition pathways for diverse plant-symbiont partnerships across the plant phylogeny, filling significant gaps in current knowledge of these processes. These experiments will allow us to understand:a. Plant-symbiont carbon-nutrient "costs" and "benefits" in terms of plant-fixed carbon and symbiont-acquired nutrient gainsb. How ecological stoichiometry and nutrient acquisition pathways vary across the land plant phylogenyc. Relationships between species, symbiont and mineral weathering ratesSecond, we will develop our new Earth system model. Here we will build on the framework of the 'COPSE' model (Carbon Oxygen Phosphorus Sulphur Evolution), which is arguably the most complete predictive 'deep time' box model in the literature, and which PI Mills has had a key role in developing over the last decade. A prototype fast spatial land surface module has been developed utilizing matrices in MATLAB and in this project we will couple the spatial land surface module to COPSE. This will allow us to build a dynamical representation of the evolving terrestrial biosphere, based both on our laboratory experiments and on literature vegetation models. This model will map the flows of phosphorus, nitrogen and carbon through the terrestrial system over geological timescales. Comparison of model outputs with multiple independent geochemical proxies will allow us to explore (1) how plant evolution and the development of symbiotic partnerships feeds back on Earth's climate; (2) the key evolutionary events that occurred through time and whether they can explain prominent CO2 drawdown events, such as during the Ordovician and Cenozoic; and, (3) the relative roles of the terrestrial biosphere vs. tectonics in controlling Earth's climatic history.Beyond the immediate results, the hybrid model we create will bridge the gap between box modelling of global geochemistry and true paleoclimate general circulation modelling, providing a useful tool for the community to further extend and employ.
Phanerozoic Eon(最近5.4亿年)涵盖了从土地最初定植到森林和开花植物的土地植物的进化史。在这个时间范围内,地球的气候发生了重大变化,但仍不确定这些变化是否主要是由陆地生物圈中的旋转驱动的,还是由诸如CO2的火山脱水等构造因素驱动的。解决这个问题的解决是我们对行星如何运作的理解的核心,但是回答它的能力受到了我们的生物地球化学计算机模型中陆地生物圈的缺乏的影响。这些“深度”模型需要简单,以便计算很长的时间尺度,这限制了包括空间特征(例如降雨位置)的能力,这对于陆地建模至关重要。一个也许更根本的问题是缺乏对植物进化的方式通过对组织中碳氮磷比率的变化而改变全球化学循环的方式,以及真菌和微生物共生体对提供关键限制营养的贡献。该项目汇集了计算机科学,地球化学,生态学和植物 - 伴侣生理学方面的专业知识,以建立一个新的深层空间地球系统模型,这是由有针对性的植物生长实验和强大的文献综述的目标所启发的。具有控制大气二氧化碳浓度的缩影中的共生体。引入同位素标记的碳,氮和磷将使我们能够捕获碳氮磷酸化的比率和养分获取途径,从而为各种植物 - 植物合作伙伴的多样化植物合作伙伴关系捕获植物系统的多样化,从而在这些过程的当前知识中填补了重大缺口。这些实验将使我们能够理解:就植物固定的碳和共生体获得的营养gainsb而言,植物 - 菌群碳含量“成本”和“福利”。在整个陆地植物系统发育中,生态化学计量和养分习得途径如何变化。物种,共生体和矿物风化的关系ratessecond之间的关系,我们将开发新的地球系统模型。在这里,我们将建立在“ copse”模型(碳氧磷硫的演化)框架上,这可以说是文献中最完整的预测“深度时间”框模型,并且Pi Mills在过去十年中具有关键作用。使用MATLAB中的矩阵开发了一个原型快速空间地面模块,在此项目中,我们将将空间地面模块与COPSE相结合。这将使我们能够基于我们的实验室实验和文献植被模型来建立不断发展的陆地生物圈的动态表示。该模型将通过地质时间标准的陆地系统绘制磷,氮和碳的流量。与多个独立地球化学代理的模型输出的比较将使我们能够探索(1)植物的进化和共生伙伴关系的发展如何反馈地球的气候; (2)通过时间发生的关键进化事件以及它们是否可以解释突出的CO2缩减事件,例如在奥陶纪和新生代期间; (3)陆地生物圈与构造在控制地球的气候历史中的相对作用。BEYOND取得了直接的结果,我们创建的混合模型将弥合全球地球化学的盒子建模和真正的古气候一般循环建模之间的差距,从而为社区提供了进一步扩展和运用的有用工具。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen.
  • DOI:
    10.1038/s41467-020-20772-2
  • 发表时间:
    2021-01-21
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Belcher CM;Mills BJW;Vitali R;Baker SJ;Lenton TM;Watson AJ
  • 通讯作者:
    Watson AJ
Widespread herbivory cost in tropical nitrogen-fixing tree species
  • DOI:
    10.1038/s41586-022-05502-6
  • 发表时间:
    2022-12-07
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Barker, Will;Comita, Liza S. S.;Batterman, Sarah A. A.
  • 通讯作者:
    Batterman, Sarah A. A.
Nitrogen and phosphorus availability alters tree-grass competition intensity in savannas
氮和磷的有效性改变了稀树草原的树草竞争强度
  • DOI:
    10.1111/1365-2745.14284
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Biro A
  • 通讯作者:
    Biro A
Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances
  • DOI:
    10.3389/ffgc.2021.704469
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cusack;S. Addo-Danso;E. Agee;K. Andersen;M. Arnaud;S. Batterman;F. Brearley;Mark Ciochina;A. Cordeiro;C. Dallstream;Milton H. Díaz‐Toribio;Lee H. Dietterich;J. Fisher;K. Fleischer;Claire Fortunel;Lucia Fuchslueger;Nathaly R. Guerrero‐Ramírez;M. Kotowska;L. F. Lugli;C. Marín;L. A. McCulloch;J. Maeght;D. Metcalfe;R. Norby;R. Oliveira;J. Powers;Tatiana Reichert;Stuart W. Smith;Chris M. Smith‐Martin;F. Soper;Laura Toro;M. Umaña;O. Valverde‐Barrantes;M. Weemstra;Leland K. Werden;M. Wong;Cynthia L Wright;S. Wright;Daniela Yaffar
  • 通讯作者:
    D. Cusack;S. Addo-Danso;E. Agee;K. Andersen;M. Arnaud;S. Batterman;F. Brearley;Mark Ciochina;A. Cordeiro;C. Dallstream;Milton H. Díaz‐Toribio;Lee H. Dietterich;J. Fisher;K. Fleischer;Claire Fortunel;Lucia Fuchslueger;Nathaly R. Guerrero‐Ramírez;M. Kotowska;L. F. Lugli;C. Marín;L. A. McCulloch;J. Maeght;D. Metcalfe;R. Norby;R. Oliveira;J. Powers;Tatiana Reichert;Stuart W. Smith;Chris M. Smith‐Martin;F. Soper;Laura Toro;M. Umaña;O. Valverde‐Barrantes;M. Weemstra;Leland K. Werden;M. Wong;Cynthia L Wright;S. Wright;Daniela Yaffar
A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean
  • DOI:
    10.1016/j.epsl.2021.117274
  • 发表时间:
    2021-11-11
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Chen, Bo;Hu, Chunlin;Zhu, Maoyan
  • 通讯作者:
    Zhu, Maoyan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Mills其他文献

Rutaka footbridge in Rwanda: a low technology deck launch
卢旺达的 Rutaka 人行桥:低技术桥面的推出
Global Natural Rates in the Long Run: Postwar Macro Trends and the Market-Implied R* in 10 Advanced Economies
长期全球自然利率:战后宏观趋势和 10 个发达经济体的市场隐含 R*
  • DOI:
    10.2139/ssrn.4603121
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Josh Davis;C. Fuenzalida;Leon Huetsch;Benjamin Mills;Alan M. Taylor
  • 通讯作者:
    Alan M. Taylor
The knowledge and beliefs of hypertensive patients attending Katleho District Hospital in Free State province, South Africa, about their illness
南非自由州省卡特莱霍地区医院的高血压患者对其疾病的了解和信念
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justin B. Mpinda;J. Tumbo;I. Govender;Benjamin Mills
  • 通讯作者:
    Benjamin Mills

Benjamin Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Mills', 18)}}的其他基金

NSFGEO-NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
NSFGEO-NERC:灾难之后:大火成岩省火山活动后的神秘排气和延迟恢复
  • 批准号:
    NE/Y00650X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Research Grant
SIM-EARTH: Simulating the evolution of Earth's environment
SIM-EARTH:模拟地球环境的演变
  • 批准号:
    EP/Y008790/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Research Grant
RIFT-CC: Rifting as a driver of long-term Climate Change
RIFT-CC:裂谷是长期气候变化的驱动因素
  • 批准号:
    NE/X011208/1
  • 财政年份:
    2022
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Research Grant
Lasers that Learn: AI-enabled intelligent materials processing
会学习的激光器:支持人工智能的智能材料加工
  • 批准号:
    EP/T026197/1
  • 财政年份:
    2020
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Research Grant
Beam-shaping for Laser-based Additive and Subtractive-manufacturing Techniques (BLAST)
用于基于激光的增材和减材制造技术 (BLAST) 的光束整形
  • 批准号:
    EP/N03368X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Fellowship

相似海外基金

The great apes and the large cats: what role did carnivores play in human evolution?
类人猿和大型猫科动物:食肉动物在人类进化中扮演什么角色?
  • 批准号:
    23H02564
  • 财政年份:
    2023
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Why did rudist bivalves flourish in the reefal environments in the Cretaceous Greenhouse Earth? -Early evolution of the Hippuritidae
为什么红壳双壳类在白垩纪温室地球的珊瑚礁环境中繁盛?
  • 批准号:
    20K04145
  • 财政年份:
    2020
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Did the brain evolution accelerate the speciation?; The neural mechanism of premating isolation.
大脑进化是否加速了物种形成?
  • 批准号:
    18K06462
  • 财政年份:
    2018
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Did Channel Flow Drive the Thermo-mechanical Evolution of the Eastern Himalaya? A Field-based Test in Northeast Bhutan
河道流驱动了喜马拉雅东部的热机械演化吗?
  • 批准号:
    1220300
  • 财政年份:
    2013
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Continuing Grant
Heads or tails - which did echinoderms lose in the evolution of radial symmetry?
头或尾——棘皮动物在径向对称的进化过程中失去了哪一个?
  • 批准号:
    DP120102849
  • 财政年份:
    2012
  • 资助金额:
    $ 78.72万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了