Atmospheric Forcing of the Iceland Sea
冰岛海的大气强迫
基本信息
- 批准号:NE/N009924/1
- 负责人:
- 金额:$ 33.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subpolar region of the North Atlantic is crucial for the global climate system. It is where coupled atmosphere-ocean processes, on a variety of spatial scales, require an integrated approach for their improved understanding and prediction. This region has enhanced 'communication' between the atmosphere and ocean. Here large surface fluxes of heat and moisture make the surface waters colder, saltier and denser resulting in a convective overturning that contributes to the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). The AMOC is an ocean circulation that carries warm water from the tropics northward with a return flow of cold water southwards at depth; it is instrumental in keeping Europe's climate relatively mild. The Iceland Sea - to the north and east of Iceland - is arguably the least studied of the North Atlantic's subpolar seas. However new discoveries are forcing a redesign of our conceptual model of the North Atlantic's ocean circulation which places the Iceland Sea at the heart of this system and suggests that it requires urgent scientific focus. The recently discovered North Icelandic Jet is thought to be one of two pathways for dense water to pass through the Denmark Strait - the stretch of ocean between Iceland and Greenland - which is the main route for dense waters from the north to enter the Atlantic. Its discovery suggests a new paradigm for where dense water entering the North Atlantic originates. However at present the source of the North Icelandic Jet remains unknown. It is hypothesized that relatively warm Atlantic-origin water is modified into denser water in the Iceland Sea, although it is unclear precisely where, when or how this happens. We will test this hypothesis and investigate this new ocean circulation paradigm. We will examine wintertime atmosphere-ocean processes in the Iceland Sea by characterising its atmospheric forcing, i.e. observing the spatial structure and variability of surface heat, moisture and momentum fluxes in the region and the weather systems that dictate these fluxes. We will make in situ observations of air-sea interaction processes from several platforms (an aircraft; and via project partners an unmanned airborne vehicle, a meteorological buoy and a research vessel) and use these to evaluate meteorological analyses and reanalyses from operational weather forecasting centres. These meteorological analyses and reanalyses are a blend of observations and model output and represent the atmosphere as best we know it. We will carry out numerical modelling experiments to investigate the dynamics of selected weather systems which strongly influence the region, but appear not to be well represented; for example, the boundary layers that develop over transitions between sea ice and the open ocean during cold-air outbreaks; or the jets and wakes that occur downstream of Iceland. We will use our unique observations to improve model representation of these systems.We will also carry out new high-resolution climate simulations. A series of experiments will cover recent past and likely future situations; as well as some idealised situations such as no wintertime sea ice in the Iceland Sea region. We will use a state-of-the-art atmospheric model with high resolution over the Iceland Sea to investigate changes in the atmospheric circulation and surface fluxes. Finally, in collaboration with our international partners, we will analyse new ocean observations and establish which weather systems are important for changing ocean properties in this region. We will use a range of ocean and atmospheric models to establish how current and future ocean circulation pathways function. In short, we will determine the role that atmosphere-ocean processes in the Iceland Sea play in creating the dense waters that flow through Denmark Strait and feed into the lower limb of the AMOC.
北大西洋副极地地区对于全球气候系统至关重要。正是在这种情况下,各种空间尺度上的大气-海洋耦合过程需要采用综合方法来提高理解和预测。该地区增强了大气与海洋之间的“交流”。这里大量的地表热量和湿气使地表水变得更冷、更咸、更稠密,从而产生对流翻转,从而形成大西洋经向翻转环流(AMOC)的下肢。 AMOC是一种海洋环流,它将来自热带的暖水带向北方,同时将冷水向南深处回流;它有助于保持欧洲气候相对温和。冰岛海位于冰岛北部和东部,可以说是北大西洋副极地海洋中研究最少的。然而,新的发现迫使我们重新设计北大西洋海洋环流的概念模型,该模型将冰岛海置于该系统的核心,并表明它需要紧迫的科学关注。最近发现的北冰岛急流被认为是浓水穿过丹麦海峡(冰岛和格陵兰岛之间的一段海洋)的两条通道之一,丹麦海峡是浓水从北部进入大西洋的主要路线。它的发现为进入北大西洋的稠密水的起源提出了一个新的范例。但目前北冰岛急流的来源仍不明。据推测,相对温暖的大西洋水源在冰岛海被改变为密度更大的水,尽管目前尚不清楚这种情况发生的具体地点、时间或方式。我们将检验这一假设并研究这种新的海洋环流范式。我们将通过表征其大气强迫来研究冰岛海的冬季大气-海洋过程,即观察该地区表面热量、水分和动量通量的空间结构和变化以及决定这些通量的天气系统。我们将从多个平台(一架飞机;并通过项目合作伙伴一架无人驾驶飞行器、一个气象浮标和一艘研究船)对海空相互作用过程进行现场观测,并利用这些平台来评估气象预报中心的气象分析和再分析。这些气象分析和再分析是观测和模型输出的结合,代表了我们所了解的最准确的大气状况。我们将进行数值模拟实验,以研究对该地区有强烈影响但似乎没有得到很好体现的选定天气系统的动态;例如,冷空气爆发期间海冰和公海之间过渡处形成的边界层;或冰岛下游发生的急流和尾流。我们将利用我们独特的观测来改进这些系统的模型表示。我们还将进行新的高分辨率气候模拟。一系列实验将涵盖最近的过去和未来可能的情况;以及一些理想化的情况,例如冰岛海地区冬季没有海冰。我们将在冰岛海上使用最先进的高分辨率大气模型来研究大气环流和表面通量的变化。最后,我们将与我们的国际合作伙伴合作,分析新的海洋观测结果,并确定哪些天气系统对于改变该地区的海洋特性至关重要。我们将使用一系列海洋和大气模型来确定当前和未来海洋环流路径的运作方式。简而言之,我们将确定冰岛海的大气-海洋过程在形成流经丹麦海峡并流入 AMOC 下肢的稠密水域中所发挥的作用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of wintertime sea-ice anomalies on high surface heat flux events in the Iceland and Greenland Seas
冬季海冰异常对冰岛和格陵兰海高表面热通量事件的影响
- DOI:10.1007/s00382-019-05095-3
- 发表时间:2020
- 期刊:
- 影响因子:4.6
- 作者:Pope J
- 通讯作者:Pope J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bracegirdle其他文献
Thomas Bracegirdle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bracegirdle', 18)}}的其他基金
Drivers and Impacts of Extreme Weather Events in Antarctica (ExtAnt)
南极洲极端天气事件的驱动因素和影响 (ExtAnt)
- 批准号:
NE/Y503307/1 - 财政年份:2024
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant
Improved projections of winds at the crossroads between Antarctica and the Southern Ocean
改进了南极洲和南大洋交界处的风预测
- 批准号:
NE/V000691/1 - 财政年份:2021
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant
Robust Spatial Projections of Real-World Climate Change
现实世界气候变化的稳健空间预测
- 批准号:
NE/N01829X/1 - 财政年份:2016
- 资助金额:
$ 33.61万 - 项目类别:
Research Grant
相似国自然基金
太平洋沃克环流对外强迫的响应研究
- 批准号:42305027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晚更新世以来南极带太平洋扇区海洋强迫冰盖失稳同热带过程的关联
- 批准号:42306266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
潮流影响下近岸海平面和大洋强迫的动力联系
- 批准号:42306010
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
CO2植被生理强迫下复合高温干旱演变机制及其对植被生产力影响研究
- 批准号:42301106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
- 批准号:
23K03198 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
水文観測データ同化を組み合わせた陸域水循環モデルによる流出発生過程の解明
陆地水循环模型结合水文观测资料同化阐明径流生成过程
- 批准号:
22KJ0457 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Forcing, inner models, and large cardinals.
强迫、内部模型和大基数。
- 批准号:
2246905 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Continuing Grant
Combinatorics of Filters, Large Cardinal and Prikry-Type Forcing
滤波器、大基数和 Prikry 型强迫的组合
- 批准号:
2346680 - 财政年份:2023
- 资助金额:
$ 33.61万 - 项目类别:
Standard Grant