Treatment of model bias in coupled atmosphere-ocean data assimilation
大气-海洋耦合资料同化模型偏差的处理
基本信息
- 批准号:NE/J005835/1
- 负责人:
- 金额:$ 45.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is expected that the change in climate over the next century is likely to lead to many more extreme weather events, which will have significant impacts on society. In order to be able to plan for societal developments policy makers need to understand the likely effects of climate change over the coming decade. This information would be useful in planning projects designed to alleviate the effects of climate change, such as flood defences, as well as for more general projects, such as deciding where to build new housing. Scientists are currently developing methods to predict general weather phenomena over time scales of several years using computer simulations of the atmosphere and ocean. However, whereas many advances have been made in recent years in forecasting on time scales of days to weeks, the science of forecasting on much longer time scales is still in its infancy.Recent developments in this area suggest that certain parts of the climate system may be predictable on time scales of several years if we can know more accurately the current state of the atmosphere and ocean throughout the world. Data assimilation is the science of combining observations of the atmosphere or ocean with computer simulations in order to be able to determine more accurately the current conditions and so produce a better forecast. It has been widely used in both weather forecasting and ocean forecasting for many years. However in developing predictions on seasonal to inter-annual time scales we need to simulate the evolution of the atmosphere and ocean together. Determining the current atmospheric and ocean states together is made more difficult in particular by two factors. One is that the atmosphere and ocean evolve on very different time scales and this is not very well handled by current methods of data assimilation. The other factor is that the computer models inevitably contain errors, due to our imperfect knowledge, and these errors are exacerbated when we treat the two systems together. In this project we will develop new data assimilation methods to determine simultaneously the state of the atmosphere and oceans using observed data, taking account of both the different time scales in the two systems and of the unknown errors in the computer models. The direct involvement of the European Centre for Medium-range Weather Forecasts in the project will allow a transfer of knowledge to operational practice.
预计下一世纪气候的变化可能会导致更多的极端天气事件,这将对社会产生重大影响。为了能够为社会发展计划,政策制定者需要了解未来十年的气候变化的可能影响。这些信息对于旨在减轻气候变化的影响的计划项目将很有用,例如防洪以及更一般的项目,例如决定在哪里建造新住房。科学家目前正在开发使用大气和海洋的计算机模拟来预测几年时间尺度的一般天气现象的方法。但是,尽管近年来在预测数天到几周的时间尺度上已经取得了许多进步,但在更长的时间尺度上进行预测的科学仍处于起步阶段。该领域的发展表明,如果我们可以在整个世界上更准确地了解气候系统的某些部分,那么气候系统的某些部分可以预测几年的时间尺度。数据同化是将大气或海洋观察与计算机模拟相结合的科学,以便能够更准确地确定当前状况并产生更好的预测。多年来,它在天气预报和海洋预测中已被广泛使用。但是,在制定对季节到青年时间尺度的预测,我们需要一起模拟大气和海洋的演变。确定当前的大气和海洋状态,尤其是两个因素变得更加困难。一个是,大气和海洋在截然不同的时间尺度上演变,这不是当前的数据同化方法很好地处理。另一个因素是,由于我们的知识不完美,计算机模型不可避免地包含错误,并且当我们一起处理两个系统时,这些错误会加剧。在该项目中,我们将开发新的数据同化方法,以使用观察到的数据同时确定大气和海洋的状态,并考虑到两个系统中的两个不同时间尺度以及计算机模型中未知错误的不同时间尺度。欧洲中等天气预报中心的直接参与该项目将使知识转移到运营实践。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amos Lawless其他文献
Marine data assimilation in the UK: the past, the present and the vision for the future
英国的海洋数据同化:过去、现在和未来的愿景
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
J. Skákala;David Ford;Keith Haines;Amos Lawless;Matthew J. Martin;Philip Browne;Marcin Chrust;S. Ciavatta;Alison Fowler;Dan Lea;Matthew R. Palmer;Andrea Rochner;Jennifer Waters;Hao Zuo;Mike Bell;Davi M. Carneiro;Yumeng Chen;Susan Kay;Dale Partridge;Martin Price;Richard Renshaw;Georgy Shapiro;J. While - 通讯作者:
J. While
Amos Lawless的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amos Lawless', 18)}}的其他基金
Covariance regularization in data assimilation for coupled dynamical systems
耦合动力系统数据同化中的协方差正则化
- 批准号:
EP/V061828/1 - 财政年份:2021
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
Hybrid data assimilation for coupled atmosphere-ocean models
大气-海洋耦合模型的混合数据同化
- 批准号:
NE/M001482/1 - 财政年份:2015
- 资助金额:
$ 45.28万 - 项目类别:
Research Grant
相似国自然基金
神经元模型中混合模式振荡诱导机制的动力学研究
- 批准号:12302069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于后牛顿近似的自洽有效单体模型及其应用
- 批准号:12375046
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Effects of estrus cycle stages on murine CDI severity
发情周期阶段对小鼠 CDI 严重程度的影响
- 批准号:
10625792 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 45.28万 - 项目类别: