Treatment of model bias in coupled atmosphere-ocean data assimilation

大气-海洋耦合资料同化模型偏差的处理

基本信息

  • 批准号:
    NE/J005835/1
  • 负责人:
  • 金额:
    $ 45.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

It is expected that the change in climate over the next century is likely to lead to many more extreme weather events, which will have significant impacts on society. In order to be able to plan for societal developments policy makers need to understand the likely effects of climate change over the coming decade. This information would be useful in planning projects designed to alleviate the effects of climate change, such as flood defences, as well as for more general projects, such as deciding where to build new housing. Scientists are currently developing methods to predict general weather phenomena over time scales of several years using computer simulations of the atmosphere and ocean. However, whereas many advances have been made in recent years in forecasting on time scales of days to weeks, the science of forecasting on much longer time scales is still in its infancy.Recent developments in this area suggest that certain parts of the climate system may be predictable on time scales of several years if we can know more accurately the current state of the atmosphere and ocean throughout the world. Data assimilation is the science of combining observations of the atmosphere or ocean with computer simulations in order to be able to determine more accurately the current conditions and so produce a better forecast. It has been widely used in both weather forecasting and ocean forecasting for many years. However in developing predictions on seasonal to inter-annual time scales we need to simulate the evolution of the atmosphere and ocean together. Determining the current atmospheric and ocean states together is made more difficult in particular by two factors. One is that the atmosphere and ocean evolve on very different time scales and this is not very well handled by current methods of data assimilation. The other factor is that the computer models inevitably contain errors, due to our imperfect knowledge, and these errors are exacerbated when we treat the two systems together. In this project we will develop new data assimilation methods to determine simultaneously the state of the atmosphere and oceans using observed data, taking account of both the different time scales in the two systems and of the unknown errors in the computer models. The direct involvement of the European Centre for Medium-range Weather Forecasts in the project will allow a transfer of knowledge to operational practice.
预计下个世纪的气候变化可能会导致更多的极端天气事件,对社会产生重大影响。为了能够规划社会发展,政策制定者需要了解未来十年气候变化可能产生的影响。这些信息对于规划旨在减轻气候变化影响的项目(例如防洪)以及更一般的项目(例如决定在哪里建造新住房)非常有用。科学家目前正在开发利用大气和海洋的计算机模拟来预测几年时间范围内一般天气现象的方法。然而,尽管近年来在几天到几周时间尺度的预报方面取得了许多进展,但更长时间尺度的预报科学仍处于起步阶段。这一领域的最新发展表明,气候系统的某些部分可能会发生变化。如果我们能够更准确地了解全世界大气和海洋的当前状况,那么我们就可以在几年的时间尺度上进行预测。数据同化是将大气或海洋的观测与计算机模拟相结合的科学,以便能够更准确地确定当前状况,从而做出更好的预测。多年来它已广泛应用于天气预报和海洋预报。然而,在对季节到年际时间尺度进行预测时,我们需要一起模拟大气和海洋的演变。特别是由于两个因素,同时确定当前的大气和海洋状态变得更加困难。一是大气和海洋在非常不同的时间尺度上演化,目前的数据同化方法不能很好地处理这一问题。另一个因素是,由于我们的知识不完善,计算机模型不可避免地包含错误,而当我们同时处理这两个系统时,这些错误会加剧。在这个项目中,我们将开发新的数据同化方法,利用观测数据同时确定大气和海洋的状态,同时考虑两个系统的不同时间尺度和计算机模型中的未知误差。欧洲中期天气预报中心直接参与该项目将使知识转化为业务实践。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amos Lawless其他文献

Marine data assimilation in the UK: the past, the present and the vision for the future
英国的海洋数据同化:过去、现在和未来的愿景
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Skákala;David Ford;Keith Haines;Amos Lawless;Matthew J. Martin;Philip Browne;Marcin Chrust;S. Ciavatta;Alison Fowler;Dan Lea;Matthew R. Palmer;Andrea Rochner;Jennifer Waters;Hao Zuo;Mike Bell;Davi M. Carneiro;Yumeng Chen;Susan Kay;Dale Partridge;Martin Price;Richard Renshaw;Georgy Shapiro;J. While
  • 通讯作者:
    J. While

Amos Lawless的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amos Lawless', 18)}}的其他基金

Covariance regularization in data assimilation for coupled dynamical systems
耦合动力系统数据同化中的协方差正则化
  • 批准号:
    EP/V061828/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45.28万
  • 项目类别:
    Research Grant
Hybrid data assimilation for coupled atmosphere-ocean models
大气-海洋耦合模型的混合数据同化
  • 批准号:
    NE/M001482/1
  • 财政年份:
    2015
  • 资助金额:
    $ 45.28万
  • 项目类别:
    Research Grant

相似国自然基金

协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
阿尔茨海默病早期认知功能下降病情演化临界预警模型研究
  • 批准号:
    82371484
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
芬戈莫德改善精神分裂症模型大鼠认知障碍和阴性症状的作用及其机制研究
  • 批准号:
    82371503
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
模块化自由装配微流控模型辅助蛋白冠介导脑靶向纳米胶束构建及机制研究
  • 批准号:
    22378358
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用物理模型研究三维细胞迁移与复杂胞外基质的关系
  • 批准号:
    12374213
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
  • 批准号:
    10820820
  • 财政年份:
    2023
  • 资助金额:
    $ 45.28万
  • 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
  • 批准号:
    10752053
  • 财政年份:
    2023
  • 资助金额:
    $ 45.28万
  • 项目类别:
Effects of estrus cycle stages on murine CDI severity
发情周期阶段对小鼠 CDI 严重程度的影响
  • 批准号:
    10625792
  • 财政年份:
    2023
  • 资助金额:
    $ 45.28万
  • 项目类别:
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
  • 批准号:
    10729420
  • 财政年份:
    2023
  • 资助金额:
    $ 45.28万
  • 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
  • 批准号:
    10751275
  • 财政年份:
    2023
  • 资助金额:
    $ 45.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了